Measuring Distances to Low-luminosity Galaxies Using Surface Brightness Fluctuations
We present an in-depth study of surface brightness fluctuations (SBFs) in low-luminosity stellar systems. Using the MIST models, we compute theoretical predictions for absolute SBF magnitudes in the LSST, HST ACS/WFC, and proposed Roman Space Telescope filter systems. We compare our calculations to...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-02, Vol.908 (1), p.24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an in-depth study of surface brightness fluctuations (SBFs) in low-luminosity stellar systems. Using the MIST models, we compute theoretical predictions for absolute SBF magnitudes in the LSST, HST ACS/WFC, and proposed Roman Space Telescope filter systems. We compare our calculations to observed SBF–color relations of systems that span a wide range of age and metallicity. Consistent with previous studies, we find that single-age population models show excellent agreement with observations of low-mass galaxies with 0.5 ≲
g
−
i
≲ 0.9. For bluer galaxies, the observed relation is better fit by models with composite stellar populations. To study SBF recovery from low-luminosity systems, we perform detailed image simulations in which we inject fully populated model galaxies into deep ground-based images from real observations. Our simulations show that LSST will provide data of sufficient quality and depth to measure SBF magnitudes with precisions of ∼0.2–0.5 mag in ultra-faint
and low-mass classical (
M
⋆
≤ 10
7
M
⊙
) dwarf galaxies out to ∼4 Mpc and ∼25 Mpc, respectively, within the first few years of its deep-wide-fast survey. Many significant practical challenges and systematic uncertainties remain, including an irreducible “sampling scatter” in the SBFs of ultra-faint dwarfs due to their undersampled stellar mass functions. We nonetheless conclude that SBFs in the new generation of wide-field imaging surveys have the potential to play a critical role in the efficient confirmation and characterization of dwarf galaxies in the nearby universe. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/abd030 |