Moses, Noah and Joseph effects in Lévy walks

We study a method for detecting the origins of anomalous diffusion, when it is observed in an ensemble of times-series, generated experimentally or numerically, without having knowledge about the exact underlying dynamics. The reasons for anomalous diffusive scaling of the mean-squared displacement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-02, Vol.23 (2), p.23002
Hauptverfasser: Aghion, Erez, Meyer, Philipp G, Adlakha, Vidushi, Kantz, Holger, Bassler, Kevin E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a method for detecting the origins of anomalous diffusion, when it is observed in an ensemble of times-series, generated experimentally or numerically, without having knowledge about the exact underlying dynamics. The reasons for anomalous diffusive scaling of the mean-squared displacement are decomposed into three root causes: increment correlations are expressed by the 'Joseph effect' (Mandelbrot and Wallis 1968 Water Resour. Res. 4 909), fat-tails of the increment probability density lead to a 'Noah effect' (Mandelbrot and Wallis 1968 Water Resour. Res. 4 909), and non-stationarity, to the 'Moses effect' (Chen et al 2017 Phys. Rev. E 95 042141). After appropriate rescaling, based on the quantification of these effects, the increment distribution converges at increasing times to a time-invariant asymptotic shape. For different processes, this asymptotic limit can be an equilibrium state, an infinite-invariant, or an infinite-covariant density. We use numerical methods of time-series analysis to quantify the three effects in a model of a non-linearly coupled Lévy walk, compare our results to theoretical predictions, and discuss the generality of the method.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/abd43c