Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada

This article develops a Bayesian approach for estimating panel quantile regression with binary outcomes in the presence of correlated random effects. We construct a working likelihood using an asymmetric Laplace error distribution and combine it with suitable prior distributions to obtain the comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical Economics 2021-01, Vol.60 (1), p.227-259
Hauptverfasser: Bresson, Georges, Lacroix, Guy, Rahman, Mohammad Arshad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article develops a Bayesian approach for estimating panel quantile regression with binary outcomes in the presence of correlated random effects. We construct a working likelihood using an asymmetric Laplace error distribution and combine it with suitable prior distributions to obtain the complete joint posterior distribution. For posterior inference, we propose two Markov chain Monte Carlo (MCMC) algorithms but prefer the algorithm that exploits the blocking procedure to produce lower autocorrelation in the MCMC draws. We also explain how to use the MCMC draws to calculate the marginal effects, relative risk and odds ratio. The performance of our preferred algorithm is demonstrated in multiple simulation studies and shown to perform extremely well. Furthermore, we implement the proposed framework to study crime recidivism in Quebec, a Canadian Province, using novel data from administrative correctional files. Our results suggest that the recently implemented “tough-on-crime” policy of the Canadian government has been largely successful in reducing the probability of repeat offenses in the post-policy period. Besides, our results support existing findings on crime recidivism and offer new insights at various quantiles.
ISSN:0377-7332
1435-8921
DOI:10.1007/s00181-020-01893-5