Vibration analysis of multi walled piezoelectric nanoresonator conveying fluid flow: Influences of surface/interface energy and walled number effects

In current work, the surface/interface parameters effects and walled number of fluid‐conveying multi walled piezoelectric nanoresonator (FC‐MWPENR) are investigated on dimensionless natural frequency (DNF) with considering viscous fluid velocity. The mentioned nanostructures (FC‐MWPENR) are subjecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2021-02, Vol.101 (2), p.n/a
1. Verfasser: Kachapi, Sayyid H. Hashemi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In current work, the surface/interface parameters effects and walled number of fluid‐conveying multi walled piezoelectric nanoresonator (FC‐MWPENR) are investigated on dimensionless natural frequency (DNF) with considering viscous fluid velocity. The mentioned nanostructures (FC‐MWPENR) are subjected to nonlinear electrostatic excitation, nonlinear van der Waals interaction and also viscoelastic foundation. For this aim, Hamilton's approach, the Lagrange–Euler's and the assumed mode methods are used. The influences of FC‐MWPENR walled number are considered for analysis of dimensionless natural frequency respect to the surface/interface effect such as Lame's constants (λI,S,μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk), and mass density (ρI,S). In current work, the surface/interface parameters effects and walled number of fluid‐conveying multi walled piezoelectric nanoresonator (FC‐MWPENR) are investigated on dimensionless natural frequency (DNF) with considering viscous fluid velocity. The mentioned nanostructures (FC‐MWPENR) are subjected to nonlinear electrostatic excitation, nonlinear van der Waals interaction and also viscoelastic foundation. For this aim, Hamilton's approach, the Lagrange–Euler's and the assumed mode methods are used.….
ISSN:0044-2267
1521-4001
DOI:10.1002/zamm.201900335