Aluminium-enriched metal-poor stars buried in the inner Galaxy

Stars with higher levels of aluminium and nitrogen enrichment are often key pieces in the chemical makeup of multiple populations in almost all globular clusters (GCs). There is also compelling observational evidence that some Galactic components could be partially built from dissipated GCs. The ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-11, Vol.643, p.L4, Article 4
Hauptverfasser: Fernandez-Trincado, Jose G., Beers, Timothy C., Minniti, Dante, Tang, Baitian, Villanova, Sandro, Geisler, Doug, Perez-Villegas, Angeles, Vieira, Katherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stars with higher levels of aluminium and nitrogen enrichment are often key pieces in the chemical makeup of multiple populations in almost all globular clusters (GCs). There is also compelling observational evidence that some Galactic components could be partially built from dissipated GCs. The identification of such stars among metal-poor field stars may therefore provide insight into the composite nature of the Milky Way (MW) bulge and inner stellar halo, and could also reveal other chemical peculiarities. Here, based on APOGEE spectra, we report the discovery of 29 mildly metal-poor ([Fe/H] less than or similar to -0.7) stars with stellar atmospheres strongly enriched in aluminium (Al-rich stars: [Al/Fe] greater than or similar to +0.5), well above the typical Galactic levels, located within the solar radius toward the bulge region, which lies in highly eccentric orbits (e greater than or similar to 0.6). We find many similarities for almost all of the chemical species measured in this work with the chemical patterns of GCs, and therefore we propose that they have likely been dynamically ejected into the bulge and inner halo from GCs formed in situ and/or GCs formed in different progenitors of known merger events experienced by the MW, such as the Gaia-Sausage-Enceladus and/or Sequoia.
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/202039207