Quasars as standard candles
We present a new catalogue of ∼2400 optically selected quasars with spectroscopic redshifts and X-ray observations from either Chandra or XMM–Newton. The sample can be used to investigate the non-linear relation between the ultraviolet (UV) and X-ray luminosity of quasars as well as to build a Hubbl...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-10, Vol.642 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new catalogue of ∼2400 optically selected quasars with spectroscopic redshifts and X-ray observations from either Chandra or XMM–Newton. The sample can be used to investigate the non-linear relation between the ultraviolet (UV) and X-ray luminosity of quasars as well as to build a Hubble diagram up to a redshift of z ∼ 7.5. We selected sources that are neither reddened by dust in the optical and UV nor obscured by gas in the X-rays, and whose X-ray fluxes are free from flux-limit-related biases. After checking for any possible systematics, we confirm, in agreement with our previous works, that the X-ray to UV relation provides distance estimates matching those from supernovae up to z ∼ 1.5, and its slope shows no redshift evolution up to z ∼ 5. We provide a full description of the methodology for testing cosmological models, further supporting a trend whereby the Hubble diagram of quasars is well reproduced by the standard flat cold dark matter model up to z ∼ 1.5–2, but strong deviations emerge at higher redshifts. Since we have minimised all non-negligible systematic effects and proven the stability of the LX − LUV relation at high redshifts, we conclude that an evolution of the expansion rate of the Universe should be considered as a possible explanation for the observed deviation, rather than some systematic (redshift-dependent) effect associated with high-redshift quasars. |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/202038899 |