Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization

This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2021-02, Vol.40 (2), p.648-668
Hauptverfasser: Chen, Gang, Chen, Yun, Wang, Wei, Li, Yaqi, Zeng, Hongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 2
container_start_page 648
container_title Circuits, systems, and signal processing
container_volume 40
creator Chen, Gang
Chen, Yun
Wang, Wei
Li, Yaqi
Zeng, Hongbing
description This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a predefined event-triggered condition. Second, with the event-triggered scheme, a new unified sampled-data filtering error system is established to deal with the issue of dissipative filtering for the neural networks with quantization. Third, by using the Lyapunov–Krasovskii functional method, a sufficient criterion is obtained to ensure asymptotic stability and strict ( Q , S , R ) - α -dissipativity for the filtering error system. Then, based on solutions to a set of linear matrix inequalities, both proper event-triggered parameters and filter parameters can be co-designed. Finally, the effectiveness and the superiority of the proposed method are verified by numerical simulation via two examples.
doi_str_mv 10.1007/s00034-020-01509-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2487069426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487069426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ff2dbec3372c06e1f995f8f16a42872c083abc57773dc69f09803ba8ae377723</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-hNMo9kKX2oUBSlggshZKZJTR1napJpqb_e1BHcuTpwON-53IPQOYFLAlBceQBgKQYKGEgGAqcHaEAyRnDGC36IBkALjoGTl2N04v0KgIhU0AF6nWx0E_Dc2eVSO71InnRtVVnrZGy9t2sV7EYnU1sH7WyzTEzrkrGu1S5G73XnVB0lbFv37pOtDW_JY6eaYL8i1zan6Mio2uuzXx2i5-lkPrrFs4ebu9H1DFeMiIAzY-ii1BVjBa0g18QIkRluSK5SyvceZ6qssqIo2KLKhQHBgZWKK82iR9kQXfS9a9d-dtoHuWo718STkqa8gFykNI8p2qcq13rvtJFrZz-U20kCcr-i7FeUcUX5s6JMI8R6yK_3_2v3V_0P9Q3xWXWe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487069426</pqid></control><display><type>article</type><title>Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Gang ; Chen, Yun ; Wang, Wei ; Li, Yaqi ; Zeng, Hongbing</creator><creatorcontrib>Chen, Gang ; Chen, Yun ; Wang, Wei ; Li, Yaqi ; Zeng, Hongbing</creatorcontrib><description>This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a predefined event-triggered condition. Second, with the event-triggered scheme, a new unified sampled-data filtering error system is established to deal with the issue of dissipative filtering for the neural networks with quantization. Third, by using the Lyapunov–Krasovskii functional method, a sufficient criterion is obtained to ensure asymptotic stability and strict ( Q , S , R ) - α -dissipativity for the filtering error system. Then, based on solutions to a set of linear matrix inequalities, both proper event-triggered parameters and filter parameters can be co-designed. Finally, the effectiveness and the superiority of the proposed method are verified by numerical simulation via two examples.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-020-01509-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic methods ; Circuits and Systems ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Filtration ; Instrumentation ; Linear matrix inequalities ; Measurement ; Neural networks ; Parameters ; Signal,Image and Speech Processing</subject><ispartof>Circuits, systems, and signal processing, 2021-02, Vol.40 (2), p.648-668</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ff2dbec3372c06e1f995f8f16a42872c083abc57773dc69f09803ba8ae377723</citedby><cites>FETCH-LOGICAL-c319t-5ff2dbec3372c06e1f995f8f16a42872c083abc57773dc69f09803ba8ae377723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-020-01509-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-020-01509-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Yaqi</creatorcontrib><creatorcontrib>Zeng, Hongbing</creatorcontrib><title>Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a predefined event-triggered condition. Second, with the event-triggered scheme, a new unified sampled-data filtering error system is established to deal with the issue of dissipative filtering for the neural networks with quantization. Third, by using the Lyapunov–Krasovskii functional method, a sufficient criterion is obtained to ensure asymptotic stability and strict ( Q , S , R ) - α -dissipativity for the filtering error system. Then, based on solutions to a set of linear matrix inequalities, both proper event-triggered parameters and filter parameters can be co-designed. Finally, the effectiveness and the superiority of the proposed method are verified by numerical simulation via two examples.</description><subject>Asymptotic methods</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Filtration</subject><subject>Instrumentation</subject><subject>Linear matrix inequalities</subject><subject>Measurement</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Signal,Image and Speech Processing</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-hNMo9kKX2oUBSlggshZKZJTR1napJpqb_e1BHcuTpwON-53IPQOYFLAlBceQBgKQYKGEgGAqcHaEAyRnDGC36IBkALjoGTl2N04v0KgIhU0AF6nWx0E_Dc2eVSO71InnRtVVnrZGy9t2sV7EYnU1sH7WyzTEzrkrGu1S5G73XnVB0lbFv37pOtDW_JY6eaYL8i1zan6Mio2uuzXx2i5-lkPrrFs4ebu9H1DFeMiIAzY-ii1BVjBa0g18QIkRluSK5SyvceZ6qssqIo2KLKhQHBgZWKK82iR9kQXfS9a9d-dtoHuWo718STkqa8gFykNI8p2qcq13rvtJFrZz-U20kCcr-i7FeUcUX5s6JMI8R6yK_3_2v3V_0P9Q3xWXWe</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chen, Gang</creator><creator>Chen, Yun</creator><creator>Wang, Wei</creator><creator>Li, Yaqi</creator><creator>Zeng, Hongbing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20210201</creationdate><title>Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization</title><author>Chen, Gang ; Chen, Yun ; Wang, Wei ; Li, Yaqi ; Zeng, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ff2dbec3372c06e1f995f8f16a42872c083abc57773dc69f09803ba8ae377723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Filtration</topic><topic>Instrumentation</topic><topic>Linear matrix inequalities</topic><topic>Measurement</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Yaqi</creatorcontrib><creatorcontrib>Zeng, Hongbing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Chen, Yun</au><au>Wang, Wei</au><au>Li, Yaqi</au><au>Zeng, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>648</spage><epage>668</epage><pages>648-668</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a predefined event-triggered condition. Second, with the event-triggered scheme, a new unified sampled-data filtering error system is established to deal with the issue of dissipative filtering for the neural networks with quantization. Third, by using the Lyapunov–Krasovskii functional method, a sufficient criterion is obtained to ensure asymptotic stability and strict ( Q , S , R ) - α -dissipativity for the filtering error system. Then, based on solutions to a set of linear matrix inequalities, both proper event-triggered parameters and filter parameters can be co-designed. Finally, the effectiveness and the superiority of the proposed method are verified by numerical simulation via two examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-020-01509-4</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2021-02, Vol.40 (2), p.648-668
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2487069426
source Springer Nature - Complete Springer Journals
subjects Asymptotic methods
Circuits and Systems
Electrical Engineering
Electronics and Microelectronics
Engineering
Filtration
Instrumentation
Linear matrix inequalities
Measurement
Neural networks
Parameters
Signal,Image and Speech Processing
title Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Reliable%20Dissipative%20Filtering%20for%20Delayed%20Neural%20Networks%20with%20Quantization&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Chen,%20Gang&rft.date=2021-02-01&rft.volume=40&rft.issue=2&rft.spage=648&rft.epage=668&rft.pages=648-668&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-020-01509-4&rft_dat=%3Cproquest_cross%3E2487069426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487069426&rft_id=info:pmid/&rfr_iscdi=true