Event-Triggered Reliable Dissipative Filtering for Delayed Neural Networks with Quantization
This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a pred...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2021-02, Vol.40 (2), p.648-668 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the event-triggered reliable dissipative filtering for delayed neural networks with quantization. First, an event-triggered scheme is introduced to save limited network resources, by which whether or not sampled signals should be transmitted to the quantizer depends on a predefined event-triggered condition. Second, with the event-triggered scheme, a new unified sampled-data filtering error system is established to deal with the issue of dissipative filtering for the neural networks with quantization. Third, by using the Lyapunov–Krasovskii functional method, a sufficient criterion is obtained to ensure asymptotic stability and strict
(
Q
,
S
,
R
)
-
α
-dissipativity for the filtering error system. Then, based on solutions to a set of linear matrix inequalities, both proper event-triggered parameters and filter parameters can be co-designed. Finally, the effectiveness and the superiority of the proposed method are verified by numerical simulation via two examples. |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-020-01509-4 |