Structure Strengthening Method for Enhancing Seismic Behavior of Soft Tunnel Portal Section

Tunnel portal sections always suffer serious damage under strong earthquakes. This paper aims to study the seismic performance of lining strengthening method in soft rock portal section by employing the model test. Firstly, the shaking table test considering the test cases, the modified input motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-01, Vol.2021, p.1-12
Hauptverfasser: Cui, Guangyao, Ma, Jianfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tunnel portal sections always suffer serious damage under strong earthquakes. This paper aims to study the seismic performance of lining strengthening method in soft rock portal section by employing the model test. Firstly, the shaking table test considering the test cases, the modified input motions, the boundary condition, and monitoring equipment are conducted to simulate the seismic response of the soft tunnel portal section. Then, the lining strengthening method of increasing concrete grade is applied to the tunnel structure to study the aseismic performance of the soft rock tunnel portal section, and the seismic effects of the tunnel linings with different concrete grades are compared and analyzed. The result shows that the proportion of soft rock to total surrounding rock is the key factor affecting the seismic response of soft rock tunnel portal section; the larger the proportion of soft rock in surrounding rock, the more vulnerable the structure to earthquake damage; the seismic performance of the lining strengthening in hard rock portal is remarkable while limited in soft rock portal section. The stiffness and strength of the lining are larger than those of surrounding rock; the seismic performance of the soft portal section could hardly be improved only by the lining strengthening method. It is suggested to adopt both the structure strengthening and isolation method in the seismic design of soft portal section.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/6624963