Sliding mode fault-tolerant control for Takagi-Sugeno fuzzy systems with local nonlinear models: Application to inverted pendulum and cart system
This paper proposes fault-tolerant control design for uncertain nonlinear systems described under Takagi-Sugeno fuzzy systems with local nonlinear models that satisfy the Lipschitz condition. First, by transforming sensor faults as ‘pseudo-actuator’ faults, an adaptive sliding mode observer is desig...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2021-02, Vol.43 (4), p.975-990 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes fault-tolerant control design for uncertain nonlinear systems described under Takagi-Sugeno fuzzy systems with local nonlinear models that satisfy the Lipschitz condition. First, by transforming sensor faults as ‘pseudo-actuator’ faults, an adaptive sliding mode observer is designed in order to simultaneously estimate system states, actuator and sensor faults despite the presence of norm-bounded uncertainties. Second, an adaptive sliding mode controller is suggested to provide a solution to stabilize the closed-loop system, even in the event of simultaneous occurrence of faults in actuators and sensors. Next, the main objective of the fault-tolerant control strategy is to compensate for the effects of fault based on the feedback information. Therefore, using the LMI optimization method, sufficient conditions are developed with
H
∞
to calculate the gains of the observer and the controller. Then, particular attention is paid to the simultaneous maximization, by convex multi-objective optimization, of the Lipschitz nonlinear constant in Takagi-Sugeno fuzzy modelling and uncertainties attenuation level. The results of the simulation illustrate the effectiveness of our fault-tolerant control approach using a nonlinear inverted pendulum with a cart system. |
---|---|
ISSN: | 0142-3312 1477-0369 |
DOI: | 10.1177/0142331220949366 |