Integrating a Three-Level GIS Framework and a Graph Model to Track, Represent, and Analyze the Dynamic Activities of Tidal Flats

Tidal flats (non-vegetated area) are soft-sediment habitats that are alternately submerged and exposed to the air by changeable tidal levels. The tidal flat dynamics research mainly utilizes the cell-level comparisons between the consecutive snapshots, but the in-depth study requires more detailed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2021-02, Vol.10 (2), p.61
Hauptverfasser: Xu, Chao, Liu, Weibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tidal flats (non-vegetated area) are soft-sediment habitats that are alternately submerged and exposed to the air by changeable tidal levels. The tidal flat dynamics research mainly utilizes the cell-level comparisons between the consecutive snapshots, but the in-depth study requires more detailed information of the dynamic activities. To better track, represent, and analyze tidal flats’ dynamic activities, this study proposes an integrated approach of a three-level Geographic Information Science (GIS) framework and a graph model. In the three-level GIS framework, the adjacent cells are assembled as the objects, and the objects on different time steps are linked as lifecycles by tracking the predecessor–successor relationships. Furthermore, eleven events are defined to describe the dynamic activities throughout the lifecycles. The graph model provides a better way to represent the lifecycles, and graph operators are utilized to facilitate the event analysis. The integrated approach is applied to tidal flats’ dynamic activities in the southwest tip of Florida Peninsula from 1984 to 2018. The results suggest that the integrated approach provides an effective way to track, represent, and analyze the dynamic activities of tidal flats, and it offers a novel perspective to examine other dynamic geographic phenomena with large spatiotemporal scales.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi10020061