Conformal equivalence of visual metrics in pseudoconvex domains

We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between bounded, smooth strongly pseudoconvex domains in C n are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-02, Vol.379 (1-2), p.743-763
Hauptverfasser: Capogna, Luca, Le Donne, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between bounded, smooth strongly pseudoconvex domains in C n are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between bounded smooth pseudoconvex domains. The proofs are inspired by Mostow’s proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-01962-1