On the fill-in of nonnegative scalar curvature metrics
In the first part of this paper, we consider the problem of fill-in of nonnegative scalar curvature (NNSC) metrics for a triple of Bartnik data ( Σ , γ , H ) . We prove that given a metric γ on S n - 1 ( 3 ≤ n ≤ 7 ), ( S n - 1 , γ , H ) admits no fill-in of NNSC metrics provided the prescribed mean...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-02, Vol.379 (1-2), p.235-270 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the first part of this paper, we consider the problem of fill-in of nonnegative scalar curvature (NNSC) metrics for a triple of Bartnik data
(
Σ
,
γ
,
H
)
. We prove that given a metric
γ
on
S
n
-
1
(
3
≤
n
≤
7
),
(
S
n
-
1
,
γ
,
H
)
admits no fill-in of NNSC metrics provided the prescribed mean curvature
H
is large enough (Theorem 4). Moreover, we prove that if
γ
is a positive scalar curvature (PSC) metric isotopic to the standard metric on
S
n
-
1
, then the much weaker condition that the total mean curvature
∫
S
n
-
1
H
d
μ
γ
is large enough rules out NNSC fill-ins, giving an partially affirmative answer to a conjecture by Gromov (Four lectures on scalar curvature, 2019, see P. 23). In the second part of this paper, we investigate the
θ
-invariant of Bartnik data and obtain some sufficient conditions for the existence of PSC fill-ins. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-020-02087-1 |