Biological Compound Capping of Silver Nanoparticle with the Seed Extracts of Blackcumin (Nigella sativa): A Potential Antibacterial, Antidiabetic, Anti-inflammatory, and Antioxidant
It is a well explored facts that need of biosynthesized nanomaterials has emerged for its several advantages in biomedical applications and the search for potential biosynthesized-nanomaterials is still ongoing. In this study an attempt was made to meet the requirement of potential biosynthesized-si...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic and organometallic polymers and materials 2021-02, Vol.31 (2), p.624-635 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is a well explored facts that need of biosynthesized nanomaterials has emerged for its several advantages in biomedical applications and the search for potential biosynthesized-nanomaterials is still ongoing. In this study an attempt was made to meet the requirement of potential biosynthesized-silver nanoparticles using the aqueous seed extract of
N. sativa
(Bc-AgNPs). X-ray powder diffraction (XRD) confirms the biosynthesis of silver nanoparticle (supports the observation of UV–Vis spectroscopy) with face centred cubic structure. Fourier-transform infrared spectroscopy (FTIR) confirms the capping of the active ingredients of seed extract and further the average size of 34 nm was confirmed by high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray analysis (EDX) confirms the purity of Bc-AgNPs. Due to the capping of the active ingredients of seed extract, the Bc-AgNPs have shown significant antibacterial activity against Gram negative bacteria and at the lower concentration of 100 µg*ml
−1
it has 89% scavenging activity against free radicals. A strong anti-inflammatory (membrane stabilization) activity towards RBCs (98% at 100 µg*ml
−1
) was recorded when compared to the positive control (aceclofenac). In addition to the previous activities, a greater inhibition of carbohydrate hydrolyzing enzymes such as α-amylase, α-glucosidase and DPP-IV highlighted the antidiabetic potential of these green synthesized AgNPs. Overall, the efficient bioactivities of Bc-AgNPs advocates its future potential in biomedical products. |
---|---|
ISSN: | 1574-1443 1574-1451 |
DOI: | 10.1007/s10904-020-01713-4 |