Enhancing the Supercapacitive and Conductivity Properties of Polypyrrole via In-situ Polymerization with HY Zeolite Nanoparticles
Highly stable zeolite HY/polypyrrole composite material was successfully fabricated by applying in-situ chemical polymerization approach. The functional properties of the prepared zeolite HY particles/polypyrrole were systematically inspected using XRD and FT-IR characterization techniques. Thermal...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic and organometallic polymers and materials 2021-02, Vol.31 (2), p.704-715 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly stable zeolite HY/polypyrrole composite material was successfully fabricated by applying in-situ chemical polymerization approach. The functional properties of the prepared zeolite HY particles/polypyrrole were systematically inspected using XRD and FT-IR characterization techniques. Thermal stability and optical properties were consistently studied using TGA and UV–Vis spectroscopy techniques. The value of band gap energy (
E
g
) of the produced zeolite HY/polypyrrole nanocomposite was lower than the values of its individual components. Cyclic voltammetry studies concluded that HY/polypyrrole electrode material with mass ratio ~ 0.4 prepared at cold polymerization conditions ~ 0 °C exhibited the highest values of specific capacitance ~ 310 F g
−1
and ionic conductivity ~ 1.7 S cm
−1
. The fabricated zeolite HY/polypyrrole composite material at 0 °C revealed a capacitance retention ~ 93.4%, while the other composite prepared at 25 °C possessed a capacitance retention ~ 72.4% after 500 charge/discharge cycles. The electrochemical impedance spectroscopy (EIS) measurement for the optimized composite electrode materials confirmed the cyclic stability after long term cycling of about 5000 cycles as a result of higher ionic conductivity between active material and ionic species than that value before cycling. |
---|---|
ISSN: | 1574-1443 1574-1451 |
DOI: | 10.1007/s10904-020-01707-2 |