Equation of State and Statistical Distribution in a Macroscopic System
A representation is proposed for the statistical sum for a macroscopic body in the form of a Euclidean functional integral in which the body deformation is a classical fluctuation-free parameter. The equation of state of the body relating its deformation and temperature with the external mechanical...
Gespeichert in:
Veröffentlicht in: | Physics of the solid state 2020-12, Vol.62 (12), p.2400-2402 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A representation is proposed for the statistical sum for a macroscopic body in the form of a Euclidean functional integral in which the body deformation is a classical fluctuation-free parameter. The equation of state of the body relating its deformation and temperature with the external mechanical load is contained in this representation as a constraint on the integration measure by a suitable classical equation of motion. |
---|---|
ISSN: | 1063-7834 1090-6460 |
DOI: | 10.1134/S1063783420120100 |