Latitudinal Characteristic Nodule Composition of Soybean-Nodulating Bradyrhizobia: Temperature-Dependent Proliferation in Soil or Infection?
A species-specific latitudinal distribution of soybean rhizobia has been reported; Bradyrhizobium japonicum and B. elkanii dominate in nodules in northern and southern areas, respectively. The aim of this study was to elucidate whether temperature-dependent proliferation in soil or infection is more...
Gespeichert in:
Veröffentlicht in: | Horticulturae 2021-02, Vol.7 (2), p.22 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A species-specific latitudinal distribution of soybean rhizobia has been reported; Bradyrhizobium japonicum and B. elkanii dominate in nodules in northern and southern areas, respectively. The aim of this study was to elucidate whether temperature-dependent proliferation in soil or infection is more reliable for determining the latitudinal characteristic distribution of soybean-nodulating rhizobia under local climate conditions. Three study locations, Fukagawa (temperate continental climate), Matsue and Miyazaki (humid sub-tropical climate), were selected in Japan. Each soil sample was transported to the other study locations, and soybean cv. Orihime (non-Rj) was pot-cultivated using three soils at three study locations for two successive years. Species composition of Bradyrhizobium in the nodules was analyzed based on the partial 16S rRNA and 16S–23S rRNA ITS gene sequences. Two Bradyrhizobium japonicum (Bj11 and BjS10J) clusters and one B. elkanii (BeL7) cluster were phylogenetically sub-grouped into two (Bj11-1-2) and four clusters (BjS10J-1-4) based on the ITS sequence. In the Fukagawa soil, Bj11-1 dominated (80–87%) in all study locations. In the Matsue soil, the composition was similar in the Matsue and Miyazaki locations, in which BeL7 dominated (70–73%), while in the Fukagawa location, BeL7 decreased to 53% and Bj11-1 and BjS10J-3 increased. In the Miyazaki soil, BeL7 dominated at 77%, and BeL7 decreased to 13% and 33% in the Fukagawa and Matsue locations, respectively, while BjS10J-2 and BjS10J-4 increased. It was supposed that the B. japonicum strain preferably proliferated in the Fukagawa location, leading to its nodule dominancy, while in the Miyazaki location, temperature-dependent infection would lead to the nodule dominancy of B. elkanii, and both factors would be involved in the Matsue location. |
---|---|
ISSN: | 2311-7524 2311-7524 |
DOI: | 10.3390/horticulturae7020022 |