Surface morphology and electrochemical behaviour of Ti-48Al-2Cr-2Nb alloy in low-concentration salt solution

Electrochemical machining (ECM) is becoming increasingly important for the efficient machining of parts with a large machining area. This is an addition challenge for ECM because of the very high machining current. To overcome this difficulty, a direct and effective strategy is to adopt the machinin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2021-02, Vol.64 (2), p.283-296
Hauptverfasser: Wang, YuDi, Xu, ZhengYang, Zhang, An, Xu, GuangChao, Zhang, ChenXiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical machining (ECM) is becoming increasingly important for the efficient machining of parts with a large machining area. This is an addition challenge for ECM because of the very high machining current. To overcome this difficulty, a direct and effective strategy is to adopt the machining mode that uses a low-concentration electrolyte with a low current density. The purpose of this study is to reveal the electrochemical behaviour and surface morphology in low-concentration electrolyte. The polarization behavior of Ti-48Al-2Cr-2Nb is measured by linear sweep voltammetry and cyclic voltammetry curves. The ηω-j curves demonstrate the special dissolution behaviour of Ti-48Al-2Cr-2Nb at low current densities. The surface morphology, surface quality, and dissolution mechanism are analysed in three low-concentration electrolytes at different current densities after the ECM dissolution experiments. The results demonstrate that Ti-48Al-2Cr-2Nb exhibits three unique dissolution morphologies in the three solutions, and we found that the γ-TiAl phase dissolves faster than the α 2 -Ti 3 Al phase. These results also show that 1% NaCl solution is more suitable for Ti-48Al-2Cr-2Nb in ECM compared with the other two solutions, considering its good surface quality, low breakdown potential, and high material removal rate. Later, the dissolution process of the sample in 1% NaCl solution at different corrosion times is revealed. Moreover, a dissolution model is proposed for the electrochemical dissolution behaviour of Ti-48Al-2Cr-2Nb in 1% NaCl solution.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-019-1558-8