Density Measurements of Two Liquefied Biomethane-Like Mixtures over the Temperature Range from (100 to 180) K at Pressures up to 9.0 MPa

Densities of two synthetic biomethane-like mixtures were measured in the homogeneous liquid phase and the supercritical region using a low-temperature single-sinker magnetic-suspension densimeter. Both mixtures consist of methane, nitrogen, hydrogen and oxygen, whereas the second mixture additionall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2021, Vol.42 (3), Article 43
Hauptverfasser: Cavuoto, Giuseppe, von Preetzmann, Nils, Eckmann, Philipp, Li, Jianrong, van der Veen, Adriaan M. H., Kleinrahm, Reiner, Richter, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Densities of two synthetic biomethane-like mixtures were measured in the homogeneous liquid phase and the supercritical region using a low-temperature single-sinker magnetic-suspension densimeter. Both mixtures consist of methane, nitrogen, hydrogen and oxygen, whereas the second mixture additionally contains carbon dioxide. For the first mixture, four isotherms from (100 to 160) K were studied over the pressure range from (1.5 to 6.6) MPa. The second mixture was investigated along three isotherms from (140 to 180) K at pressures of (2.6 to 9.0) MPa, where only the densities at 180 K are usable due to solidification of the carbon dioxide at the lower temperatures. The relative expanded combined uncertainty ( k  = 2) of the experimental densities was estimated to be in the range of (0.022 to 0.027)  % for the first mixture and (0.046 to 0.054)  % for the second mixture, respectively. Due to a supercritical liquefaction procedure and the integration of a special VLE-cell, densities in the homogeneous liquid phase could be measured without changing the composition of the liquefied mixture. Moreover, saturated-liquid densities were determined by extrapolation of the experimental single-phase liquid densities to the vapor pressure, which was determined experimentally for the mixture without carbon dioxide and calculated with an equation of state (EOS) for the mixture containing carbon dioxide. The relative expanded combined uncertainty ( k  = 2) of the saturated-liquid densities is less than 0.08 % in most cases. The new experimental results were compared with the GERG-2008 equation of state; the deviations are less than 0.17 %.
ISSN:0195-928X
1572-9567
DOI:10.1007/s10765-020-02791-9