Low synchronization Gram–Schmidt and generalized minimal residual algorithms

Summary The Gram–Schmidt process uses orthogonal projection to construct the A = QR factorization of a matrix. When Q has linearly independent columns, the operator P = I − Q(QTQ)−1QT defines an orthogonal projection onto Q⊥. In finite precision, Q loses orthogonality as the factorization progresses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2021-03, Vol.28 (2), p.n/a
Hauptverfasser: Świrydowicz, Katarzyna, Langou, Julien, Ananthan, Shreyas, Yang, Ulrike, Thomas, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The Gram–Schmidt process uses orthogonal projection to construct the A = QR factorization of a matrix. When Q has linearly independent columns, the operator P = I − Q(QTQ)−1QT defines an orthogonal projection onto Q⊥. In finite precision, Q loses orthogonality as the factorization progresses. A family of approximate projections is derived with the form P = I − QTQT, with correction matrix T. When T = (QTQ)−1, and T is triangular, it is postulated that the best achievable orthogonality is O(ε)κ(A). We present new variants of modified (MGS) and classical Gram–Schmidt algorithms that require one global reduction step. An interesting form of the projector leads to a compact WY representation for MGS. In particular, the inverse compact WY MGS algorithm is equivalent to a lower triangular solve. Our main contribution is to introduce a backward normalization lag into the compact WY representation, resulting in a O(ε)κ([r0,AVm]) stable Generalized Minimal Residual Method (GMRES) algorithm that requires only one global reduce per iteration. Further improvements in performance are achieved by accelerating GMRES on GPUs.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.2343