Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering
Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-02, Vol.31 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Chen, Fuzhou Shi, Dong Yang, Mingzhi Jiang, Hehe Shao, Yongliang Wang, Shouzhi Zhang, Baoguo Shen, Jianxing Wu, Yongzhong Hao, Xiaopeng |
description | Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes.
A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved. |
doi_str_mv | 10.1002/adfm.202007132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2485438327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485438327</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2722-62389f6226d3b119c582a01235b717f85b2d90b6b501d6f259e58c15934f7d1d3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExG9em7iGWin7Jc3woeQAJqgibdNdzu7lCxdbLsYbv4EfqO_xCUYTjPv5Mk7yeN5j4x2GaXQEzLfdoECpSHjcOW1WMCCDqcQXV929nnr3Vm7oZSFIe-3vOOy2mNJRmhVoVGShV79_hwX1QrIFB2ayjpTZ642SPLKkImwjggtycqJtEQyV72laEJlRIHPM920rJ0lSruKuDWSgdwLnZ16MVsLreyWDJwzKq1dc2ygt7WwSMa6UBrRKF3ceze5KC0-_M-29zEZvw-nnfnry2w4mHcKCAE6AfAozgOAQPKUsTjzIxCUAffTkIV55KcgY5oGqU-ZDHLwY_SjjPkx7-ehZJK3vadz785UXzVal2yq2ujmZQL9yO_ziEPYUPGZ-lYlHpKdUVthDgmjyUl5clKeXJQng9FkcUn8D2JPeEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485438327</pqid></control><display><type>article</type><title>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Fuzhou ; Shi, Dong ; Yang, Mingzhi ; Jiang, Hehe ; Shao, Yongliang ; Wang, Shouzhi ; Zhang, Baoguo ; Shen, Jianxing ; Wu, Yongzhong ; Hao, Xiaopeng</creator><creatorcontrib>Chen, Fuzhou ; Shi, Dong ; Yang, Mingzhi ; Jiang, Hehe ; Shao, Yongliang ; Wang, Shouzhi ; Zhang, Baoguo ; Shen, Jianxing ; Wu, Yongzhong ; Hao, Xiaopeng</creatorcontrib><description>Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes.
A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202007132</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; binary metal sulfide ; built‐in electric field ; Charge transport ; Electric fields ; Electrode materials ; Electrodes ; Energy storage ; heterostructure ; Heterostructures ; Li/Na‐ion batteries ; Lithium ; Materials science ; Molybdenum disulfide ; Nanoparticles ; phase transition ; Phase transitions ; Rechargeable batteries ; Sodium-ion batteries ; Transition metals</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (6), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1037-5255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202007132$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202007132$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Chen, Fuzhou</creatorcontrib><creatorcontrib>Shi, Dong</creatorcontrib><creatorcontrib>Yang, Mingzhi</creatorcontrib><creatorcontrib>Jiang, Hehe</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Wang, Shouzhi</creatorcontrib><creatorcontrib>Zhang, Baoguo</creatorcontrib><creatorcontrib>Shen, Jianxing</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><title>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</title><title>Advanced functional materials</title><description>Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes.
A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved.</description><subject>Anodes</subject><subject>binary metal sulfide</subject><subject>built‐in electric field</subject><subject>Charge transport</subject><subject>Electric fields</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>heterostructure</subject><subject>Heterostructures</subject><subject>Li/Na‐ion batteries</subject><subject>Lithium</subject><subject>Materials science</subject><subject>Molybdenum disulfide</subject><subject>Nanoparticles</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Transition metals</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhjdGExG9em7iGWin7Jc3woeQAJqgibdNdzu7lCxdbLsYbv4EfqO_xCUYTjPv5Mk7yeN5j4x2GaXQEzLfdoECpSHjcOW1WMCCDqcQXV929nnr3Vm7oZSFIe-3vOOy2mNJRmhVoVGShV79_hwX1QrIFB2ayjpTZ642SPLKkImwjggtycqJtEQyV72laEJlRIHPM920rJ0lSruKuDWSgdwLnZ16MVsLreyWDJwzKq1dc2ygt7WwSMa6UBrRKF3ceze5KC0-_M-29zEZvw-nnfnry2w4mHcKCAE6AfAozgOAQPKUsTjzIxCUAffTkIV55KcgY5oGqU-ZDHLwY_SjjPkx7-ehZJK3vadz785UXzVal2yq2ujmZQL9yO_ziEPYUPGZ-lYlHpKdUVthDgmjyUl5clKeXJQng9FkcUn8D2JPeEk</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chen, Fuzhou</creator><creator>Shi, Dong</creator><creator>Yang, Mingzhi</creator><creator>Jiang, Hehe</creator><creator>Shao, Yongliang</creator><creator>Wang, Shouzhi</creator><creator>Zhang, Baoguo</creator><creator>Shen, Jianxing</creator><creator>Wu, Yongzhong</creator><creator>Hao, Xiaopeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1037-5255</orcidid></search><sort><creationdate>20210201</creationdate><title>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</title><author>Chen, Fuzhou ; Shi, Dong ; Yang, Mingzhi ; Jiang, Hehe ; Shao, Yongliang ; Wang, Shouzhi ; Zhang, Baoguo ; Shen, Jianxing ; Wu, Yongzhong ; Hao, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2722-62389f6226d3b119c582a01235b717f85b2d90b6b501d6f259e58c15934f7d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>binary metal sulfide</topic><topic>built‐in electric field</topic><topic>Charge transport</topic><topic>Electric fields</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>heterostructure</topic><topic>Heterostructures</topic><topic>Li/Na‐ion batteries</topic><topic>Lithium</topic><topic>Materials science</topic><topic>Molybdenum disulfide</topic><topic>Nanoparticles</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fuzhou</creatorcontrib><creatorcontrib>Shi, Dong</creatorcontrib><creatorcontrib>Yang, Mingzhi</creatorcontrib><creatorcontrib>Jiang, Hehe</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Wang, Shouzhi</creatorcontrib><creatorcontrib>Zhang, Baoguo</creatorcontrib><creatorcontrib>Shen, Jianxing</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fuzhou</au><au>Shi, Dong</au><au>Yang, Mingzhi</au><au>Jiang, Hehe</au><au>Shao, Yongliang</au><au>Wang, Shouzhi</au><au>Zhang, Baoguo</au><au>Shen, Jianxing</au><au>Wu, Yongzhong</au><au>Hao, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>6</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes.
A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202007132</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1037-5255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-02, Vol.31 (6), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2485438327 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes binary metal sulfide built‐in electric field Charge transport Electric fields Electrode materials Electrodes Energy storage heterostructure Heterostructures Li/Na‐ion batteries Lithium Materials science Molybdenum disulfide Nanoparticles phase transition Phase transitions Rechargeable batteries Sodium-ion batteries Transition metals |
title | Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Designed%20MnS%E2%80%90MoS2%20Heterostructure%20for%20Fast%20and%20Stable%20Li/Na%20Storage:Insights%20into%20the%20Advanced%20Mechanism%20Attributed%20to%20Phase%20Engineering&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Fuzhou&rft.date=2021-02-01&rft.volume=31&rft.issue=6&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202007132&rft_dat=%3Cproquest_wiley%3E2485438327%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485438327&rft_id=info:pmid/&rfr_iscdi=true |