Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering

Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-02, Vol.31 (6), p.n/a
Hauptverfasser: Chen, Fuzhou, Shi, Dong, Yang, Mingzhi, Jiang, Hehe, Shao, Yongliang, Wang, Shouzhi, Zhang, Baoguo, Shen, Jianxing, Wu, Yongzhong, Hao, Xiaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced functional materials
container_volume 31
creator Chen, Fuzhou
Shi, Dong
Yang, Mingzhi
Jiang, Hehe
Shao, Yongliang
Wang, Shouzhi
Zhang, Baoguo
Shen, Jianxing
Wu, Yongzhong
Hao, Xiaopeng
description Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes. A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved.
doi_str_mv 10.1002/adfm.202007132
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2485438327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485438327</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2722-62389f6226d3b119c582a01235b717f85b2d90b6b501d6f259e58c15934f7d1d3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExG9em7iGWin7Jc3woeQAJqgibdNdzu7lCxdbLsYbv4EfqO_xCUYTjPv5Mk7yeN5j4x2GaXQEzLfdoECpSHjcOW1WMCCDqcQXV929nnr3Vm7oZSFIe-3vOOy2mNJRmhVoVGShV79_hwX1QrIFB2ayjpTZ642SPLKkImwjggtycqJtEQyV72laEJlRIHPM920rJ0lSruKuDWSgdwLnZ16MVsLreyWDJwzKq1dc2ygt7WwSMa6UBrRKF3ceze5KC0-_M-29zEZvw-nnfnry2w4mHcKCAE6AfAozgOAQPKUsTjzIxCUAffTkIV55KcgY5oGqU-ZDHLwY_SjjPkx7-ehZJK3vadz785UXzVal2yq2ujmZQL9yO_ziEPYUPGZ-lYlHpKdUVthDgmjyUl5clKeXJQng9FkcUn8D2JPeEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485438327</pqid></control><display><type>article</type><title>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Fuzhou ; Shi, Dong ; Yang, Mingzhi ; Jiang, Hehe ; Shao, Yongliang ; Wang, Shouzhi ; Zhang, Baoguo ; Shen, Jianxing ; Wu, Yongzhong ; Hao, Xiaopeng</creator><creatorcontrib>Chen, Fuzhou ; Shi, Dong ; Yang, Mingzhi ; Jiang, Hehe ; Shao, Yongliang ; Wang, Shouzhi ; Zhang, Baoguo ; Shen, Jianxing ; Wu, Yongzhong ; Hao, Xiaopeng</creatorcontrib><description>Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes. A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202007132</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; binary metal sulfide ; built‐in electric field ; Charge transport ; Electric fields ; Electrode materials ; Electrodes ; Energy storage ; heterostructure ; Heterostructures ; Li/Na‐ion batteries ; Lithium ; Materials science ; Molybdenum disulfide ; Nanoparticles ; phase transition ; Phase transitions ; Rechargeable batteries ; Sodium-ion batteries ; Transition metals</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (6), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1037-5255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202007132$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202007132$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Chen, Fuzhou</creatorcontrib><creatorcontrib>Shi, Dong</creatorcontrib><creatorcontrib>Yang, Mingzhi</creatorcontrib><creatorcontrib>Jiang, Hehe</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Wang, Shouzhi</creatorcontrib><creatorcontrib>Zhang, Baoguo</creatorcontrib><creatorcontrib>Shen, Jianxing</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><title>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</title><title>Advanced functional materials</title><description>Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes. A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved.</description><subject>Anodes</subject><subject>binary metal sulfide</subject><subject>built‐in electric field</subject><subject>Charge transport</subject><subject>Electric fields</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>heterostructure</subject><subject>Heterostructures</subject><subject>Li/Na‐ion batteries</subject><subject>Lithium</subject><subject>Materials science</subject><subject>Molybdenum disulfide</subject><subject>Nanoparticles</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Transition metals</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhjdGExG9em7iGWin7Jc3woeQAJqgibdNdzu7lCxdbLsYbv4EfqO_xCUYTjPv5Mk7yeN5j4x2GaXQEzLfdoECpSHjcOW1WMCCDqcQXV929nnr3Vm7oZSFIe-3vOOy2mNJRmhVoVGShV79_hwX1QrIFB2ayjpTZ642SPLKkImwjggtycqJtEQyV72laEJlRIHPM920rJ0lSruKuDWSgdwLnZ16MVsLreyWDJwzKq1dc2ygt7WwSMa6UBrRKF3ceze5KC0-_M-29zEZvw-nnfnry2w4mHcKCAE6AfAozgOAQPKUsTjzIxCUAffTkIV55KcgY5oGqU-ZDHLwY_SjjPkx7-ehZJK3vadz785UXzVal2yq2ujmZQL9yO_ziEPYUPGZ-lYlHpKdUVthDgmjyUl5clKeXJQng9FkcUn8D2JPeEk</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chen, Fuzhou</creator><creator>Shi, Dong</creator><creator>Yang, Mingzhi</creator><creator>Jiang, Hehe</creator><creator>Shao, Yongliang</creator><creator>Wang, Shouzhi</creator><creator>Zhang, Baoguo</creator><creator>Shen, Jianxing</creator><creator>Wu, Yongzhong</creator><creator>Hao, Xiaopeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1037-5255</orcidid></search><sort><creationdate>20210201</creationdate><title>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</title><author>Chen, Fuzhou ; Shi, Dong ; Yang, Mingzhi ; Jiang, Hehe ; Shao, Yongliang ; Wang, Shouzhi ; Zhang, Baoguo ; Shen, Jianxing ; Wu, Yongzhong ; Hao, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2722-62389f6226d3b119c582a01235b717f85b2d90b6b501d6f259e58c15934f7d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>binary metal sulfide</topic><topic>built‐in electric field</topic><topic>Charge transport</topic><topic>Electric fields</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>heterostructure</topic><topic>Heterostructures</topic><topic>Li/Na‐ion batteries</topic><topic>Lithium</topic><topic>Materials science</topic><topic>Molybdenum disulfide</topic><topic>Nanoparticles</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fuzhou</creatorcontrib><creatorcontrib>Shi, Dong</creatorcontrib><creatorcontrib>Yang, Mingzhi</creatorcontrib><creatorcontrib>Jiang, Hehe</creatorcontrib><creatorcontrib>Shao, Yongliang</creatorcontrib><creatorcontrib>Wang, Shouzhi</creatorcontrib><creatorcontrib>Zhang, Baoguo</creatorcontrib><creatorcontrib>Shen, Jianxing</creatorcontrib><creatorcontrib>Wu, Yongzhong</creatorcontrib><creatorcontrib>Hao, Xiaopeng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fuzhou</au><au>Shi, Dong</au><au>Yang, Mingzhi</au><au>Jiang, Hehe</au><au>Shao, Yongliang</au><au>Wang, Shouzhi</au><au>Zhang, Baoguo</au><au>Shen, Jianxing</au><au>Wu, Yongzhong</au><au>Hao, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>6</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Combining 2D MoS2 with other transition metal sulfide is a promising strategy to elevate its electrochemical performances. Herein, heterostructures constructed using MnS nanoparticles embedded in MoS2 nanosheets (denoted as MnS‐MoS2) are designed and synthesized as anode materials for lithium/sodium‐ion batteries via a facile one‐step hydrothermal method. Phase transition and built‐in electric field brought by the heterostructure enhance the Li/Na ion intercalation kinetics, elevate the charge transport, and accommodate the volume expansion. The sequential phase transitions from 2H to 3R of MoS2 and α to γ of MnS are revealed for the first time. As a result, the MnS‐MoS2 electrode delivers outstanding specific capacity (1246.2 mAh g−1 at 1 A g−1), excellent rate, and stable long‐term cycling stability (397.2 mAh g−1 maintained after 3000 cycles at 20 A g−1) in Li‐ion half‐cells. Superior cycling and rate performance are also presented in sodium half‐cells and Li/Na full cells, demonstrating a promising practical application of the MnS‐MoS2 electrode. This work is anticipated to afford an in‐depth comprehension of the heterostructure contribution in energy storage and illuminate a new perspective to construct binary transition metal sulfide anodes. A heterostructure composed of MnS and MoS2 (denoted as MnS‐MoS2) possesses a uniform sheet structure. The MnS‐MoS2 heterostructure undergoes phase transition from 2H to 3R of MoS2 and α to γ of MnS during the electrode reaction. A built‐in electric field is introduced to enhance the electrochemical performance. Superior cycling and rate performance are achieved.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202007132</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1037-5255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-02, Vol.31 (6), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2485438327
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
binary metal sulfide
built‐in electric field
Charge transport
Electric fields
Electrode materials
Electrodes
Energy storage
heterostructure
Heterostructures
Li/Na‐ion batteries
Lithium
Materials science
Molybdenum disulfide
Nanoparticles
phase transition
Phase transitions
Rechargeable batteries
Sodium-ion batteries
Transition metals
title Novel Designed MnS‐MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Designed%20MnS%E2%80%90MoS2%20Heterostructure%20for%20Fast%20and%20Stable%20Li/Na%20Storage:Insights%20into%20the%20Advanced%20Mechanism%20Attributed%20to%20Phase%20Engineering&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Fuzhou&rft.date=2021-02-01&rft.volume=31&rft.issue=6&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202007132&rft_dat=%3Cproquest_wiley%3E2485438327%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485438327&rft_id=info:pmid/&rfr_iscdi=true