Black Hole Mergers from Star Clusters with Top-heavy Initial Mass Functions

Recent observations of globular clusters (GCs) provide evidence that the stellar initial mass function (IMF) may not be universal, suggesting specifically that the IMF grows increasingly top-heavy with decreasing metallicity and increasing gas density. Noncanonical IMFs can greatly affect the evolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2021-02, Vol.907 (2), p.L25
Hauptverfasser: Weatherford, Newlin C., Fragione, Giacomo, Kremer, Kyle, Chatterjee, Sourav, Ye, Claire S., Rodriguez, Carl L., Rasio, Frederic A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent observations of globular clusters (GCs) provide evidence that the stellar initial mass function (IMF) may not be universal, suggesting specifically that the IMF grows increasingly top-heavy with decreasing metallicity and increasing gas density. Noncanonical IMFs can greatly affect the evolution of GCs, mainly because the high end determines how many black holes (BHs) form. Here we compute a new set of GC models, varying the IMF within observational uncertainties. We find that GCs with top-heavy IMFs lose most of their mass within a few gigayears through stellar winds and tidal stripping. Heating of the cluster through BH mass segregation greatly enhances this process. We show that, as they approach complete dissolution, GCs with top-heavy IMFs can evolve into “dark clusters” consisting of mostly BHs by mass. In addition to producing more BHs, GCs with top-heavy IMFs also produce many more binary BH (BBH) mergers. Even though these clusters are short-lived, mergers of ejected BBHs continue at a rate comparable to, or greater than, what is found for long-lived GCs with canonical IMFs. Therefore, these clusters, though they are no longer visible today, could still contribute significantly to the local BBH merger rate detectable by LIGO/Virgo, especially for sources with higher component masses well into the BH mass gap. We also report that one of our GC models with a top-heavy IMF produces dozens of intermediate-mass black holes (IMBHs) with masses , including one with . Ultimately, additional gravitational wave observations will provide strong constraints on the stellar IMF in old GCs and the formation of IMBHs at high redshift.
ISSN:2041-8205
2041-8213
DOI:10.3847/2041-8213/abd79c