Nonlinear vibration absorbers applied on footbridges
This paper deals with the performance of linear and nonlinear dynamic vibration absorbers (DVAs) to suppress footbridges vertical vibrations. The walking pedestrian vertical force is modeled as a moving time-dependent force and mass. The partial differential equations govern the dynamics of the syst...
Gespeichert in:
Veröffentlicht in: | Meccanica (Milan) 2021, Vol.56 (1), p.23-40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the performance of linear and nonlinear dynamic vibration absorbers (DVAs) to suppress footbridges vertical vibrations. The walking pedestrian vertical force is modeled as a moving time-dependent force and mass. The partial differential equations govern the dynamics of the system; such equations are reduced to a set of ordinary differential equations by means of the Bubnov–Galerkin method with an accurate multimode expansion of the displacement field. The optimal vibration absorber parameters are determined using two objective functions: maximum footbridge deflection and the transferred energy from the footbridge to the DVA. The most suitable nonlinear DVA is proposed for the investigated footbridge. The results show that the DVAs with quadratic nonlinearity are the most performant DVAs. |
---|---|
ISSN: | 0025-6455 1572-9648 |
DOI: | 10.1007/s11012-020-01262-7 |