Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates

Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been developed over the past three decades, yet chemically robust frameworks, n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-02, Vol.5 (4), p.1166-1188
Hauptverfasser: De, Siddhartha, Devic, Thomas, Fateeva, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been developed over the past three decades, yet chemically robust frameworks, necessary for applications, have been achieved much more recently and this field is expanding. This progress is partially driven by the development of porphyrins and phthalocyanines bearing alternative coordinating groups (phosphonate, azolates, phenolates...) that allowed moving the related MOFs beyond metal-carboxylates and achieving new topologies and properties. In this perspective article we first give a brief outline of the synthetic pathways towards simple porphyrins and phthalocyanines bearing these complexing groups. The related MOF compounds are then described; their structural and textural properties are discussed, as well as their stability and physical properties. An overview of the resulting nets and topologies is proposed, showing both the similarities with metal-carboxylate phases and the peculiarities related to the alternative coordinating groups. Eventually, the opportunities offered by this recent research topic, in terms of both synthesis pathways and modulation of pore size and shape, stability and physical properties, are discussed. The recently emerging class of MOFs based on porphyrins and phthalocyanines bearing alternative coordinating groups offers opportunities for functional materials.
ISSN:1477-9226
1477-9234
DOI:10.1039/d0dt03903a