Target heating in femtosecond laser–plasma interactions: Quantitative analysis of experimental data

We study electron heating and stopping power in warm dense matter as formed in interactions of sub-picosecond high-intensity lasers with solid bulk targets. In such interactions, an intense beam of forward moving relativistic electrons is created, inducing a compensating return current and generatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-02, Vol.28 (2)
Hauptverfasser: Nardi, Eran, Zinamon, Zeev, Stambulchik, Evgeny, Zastrau, Ulf, Kroupp, Eyal, Uschmann, Ingo, Paulus, Gerhard G., Maron, Yitzhak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study electron heating and stopping power in warm dense matter as formed in interactions of sub-picosecond high-intensity lasers with solid bulk targets. In such interactions, an intense beam of forward moving relativistic electrons is created, inducing a compensating return current and generating characteristic Kα x-ray radiation along the propagation path. The theoretical calculations presented here are inspired by, and tested against, a previously published study that provides bulk-temperature and absolutely calibrated Kα radial profiles. By using Monte Carlo simulations, the experimental data allow for inferring the flux of the relativistic electrons, which is a crucial input for the target heating calculations. For the latter, a “rigid beam” model is employed, describing the central, nearly homogeneous, part of the target. The comparison with the experiment shows a fairly good agreement. For the conditions analyzed, we find that the effect of the return current is dominant both in the target heating and in the beam stopping.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0035356