The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences

This paper establishes complete convergence for weighted sums and the Marcinkiewicz–Zygmund-type strong law of large numbers for sequences of negatively associated and identically distributed random variables { X , X n , n ≥ 1 } with general normalizing constants under a moment condition that E R (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2021-03, Vol.34 (1), p.331-348
Hauptverfasser: Anh, Vu T. N., Hien, Nguyen T. T., Thanh, Le V., Van, Vo T. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper establishes complete convergence for weighted sums and the Marcinkiewicz–Zygmund-type strong law of large numbers for sequences of negatively associated and identically distributed random variables { X , X n , n ≥ 1 } with general normalizing constants under a moment condition that E R ( X ) < ∞ , where R ( · ) is a regularly varying function. The result is new even when the random variables are independent and identically distributed (i.i.d.), and a special case of this result comes close to a solution to an open question raised by Chen and Sung (Stat Probab Lett 92:45–52, 2014). The proof exploits some properties of slowly varying functions and the de Bruijn conjugates. A counterpart of the main result obtained by Martikainen (J Math Sci 75(5):1944–1946, 1995) on the Marcinkiewicz–Zygmund-type strong law of large numbers for pairwise i.i.d. random variables is also presented. Two illustrative examples are provided, including a strong law of large numbers for pairwise negatively dependent random variables which have the same distribution as the random variable appearing in the St. Petersburg game.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-019-00973-2