Self-normalized Moderate Deviations for Random Walk in Random Scenery

Let { S k : k ≥ 0 } be a symmetric and aperiodic random walk on Z d , d ≥ 3 , and { ξ ( z ) , z ∈ Z d } a collection of independent and identically distributed random variables. Consider a random walk in random scenery defined by T n = ∑ k = 0 n ξ ( S k ) = ∑ z ∈ Z d l n ( z ) ξ ( z ) , where l n (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2021-03, Vol.34 (1), p.103-124
Hauptverfasser: Feng, Xinwei, Shao, Qi-Man, Zeitouni, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let { S k : k ≥ 0 } be a symmetric and aperiodic random walk on Z d , d ≥ 3 , and { ξ ( z ) , z ∈ Z d } a collection of independent and identically distributed random variables. Consider a random walk in random scenery defined by T n = ∑ k = 0 n ξ ( S k ) = ∑ z ∈ Z d l n ( z ) ξ ( z ) , where l n ( z ) = ∑ k = 0 n I { S k = z } is the local time of the random walk at the site z . Using ( ∑ z ∈ Z d l n ( z ) | ξ ( z ) | p ) 1 / p , p ≥ 2 , as the normalizing constants, we establish self-normalized moderate deviations for random walk in random scenery under a much weaker condition than a finite moment-generating function of the scenery variables.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-019-00965-2