Self-normalized Moderate Deviations for Random Walk in Random Scenery
Let { S k : k ≥ 0 } be a symmetric and aperiodic random walk on Z d , d ≥ 3 , and { ξ ( z ) , z ∈ Z d } a collection of independent and identically distributed random variables. Consider a random walk in random scenery defined by T n = ∑ k = 0 n ξ ( S k ) = ∑ z ∈ Z d l n ( z ) ξ ( z ) , where l n (...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2021-03, Vol.34 (1), p.103-124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
{
S
k
:
k
≥
0
}
be a symmetric and aperiodic random walk on
Z
d
,
d
≥
3
, and
{
ξ
(
z
)
,
z
∈
Z
d
}
a collection of independent and identically distributed random variables. Consider a random walk in random scenery defined by
T
n
=
∑
k
=
0
n
ξ
(
S
k
)
=
∑
z
∈
Z
d
l
n
(
z
)
ξ
(
z
)
, where
l
n
(
z
)
=
∑
k
=
0
n
I
{
S
k
=
z
}
is the local time of the random walk at the site
z
. Using
(
∑
z
∈
Z
d
l
n
(
z
)
|
ξ
(
z
)
|
p
)
1
/
p
,
p
≥
2
, as the normalizing constants, we establish self-normalized moderate deviations for random walk in random scenery under a much weaker condition than a finite moment-generating function of the scenery variables. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-019-00965-2 |