On L ∞ stabilization of diagonal semilinear hyperbolic systems by saturated boundary control

This paper considers a diagonal semilinear system of hyperbolic partial differential equations with positive and constant velocities. The boundary condition is composed of an unstable linear term and a saturated feedback control. Weak solutions with initial data in L 2 ([0, 1]) are considered and we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2020, Vol.26, p.23
Hauptverfasser: Dus, Mathias, Ferrante, Francesco, Prieur, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers a diagonal semilinear system of hyperbolic partial differential equations with positive and constant velocities. The boundary condition is composed of an unstable linear term and a saturated feedback control. Weak solutions with initial data in L 2 ([0, 1]) are considered and well-posedness of the system is proven using nonlinear semigroup techniques. Local L ∞ exponential stability is tackled by a Lyapunov analysis and convergence of semigroups. Moreover, an explicit estimation of the region of attraction is given.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2019069