Defects on CoS2−x: Tuning Redox Reactions for Sustainable Degradation of Organic Pollutants

It is important to develop self‐producing reactive oxygen species (ROSs) systems and maintain the continuous and effective degradation of organic pollutants. Herein, for the first time, a system of ultrasound‐treated CoS2−x mixed with Fe2+ is constructed to sustainably release singlet oxygen (1O2) f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-02, Vol.60 (6), p.2903-2908
Hauptverfasser: Ji, Jiahui, Yan, Qingyun, Yin, Pengcheng, Mine, Shinya, Matsuoka, Masaya, Xing, Mingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is important to develop self‐producing reactive oxygen species (ROSs) systems and maintain the continuous and effective degradation of organic pollutants. Herein, for the first time, a system of ultrasound‐treated CoS2−x mixed with Fe2+ is constructed to sustainably release singlet oxygen (1O2) for the effective degradation of various organic pollutants, including dyes, phenols, and antibiotics. Ultrasonic treatment produces defects on the surface of CoS2 which promote the production of ROSs and the circulation of Fe3+/Fe2+. With the help of Co4+/Co3+ exposed on the surface of CoS2−x, the directional conversion of superoxide radical (.O2−) to 1O2 is realized. The CoS2−x/Fe2+ system can degrade organic pollutants efficiently for up to 30 days, which is significantly better than the currently recognized CuPx system (
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202013015