Preparation of conductive polylactic acid/high density polyethylene/carbon black composites with low percolation threshold by locating the carbon black at the Interface of co‐continuous blends

In the current study, polylactic acid/high density polyethylene/carbon black (PLA/HDPE/CB) composites are prepared via a two‐step method. A double percolation network with co‐continuous structure and filler distribution at the interface is constructed to design conductive polymer composites with low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2021-05, Vol.138 (17), p.n/a
Hauptverfasser: Luo, Yue, Xiong, Su‐Ya, Zhang, Feng, He, Xiao‐Xiang, Lu, Xiang, Peng, Rui‐Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the current study, polylactic acid/high density polyethylene/carbon black (PLA/HDPE/CB) composites are prepared via a two‐step method. A double percolation network with co‐continuous structure and filler distribution at the interface is constructed to design conductive polymer composites with low percolation threshold. The controllable distribution of CB at the interface is achieved by appropriate processing procedures involved mixing sequence and mixing time by taking advantage of the migration of CB from the unfavorable PLA phase to the favorable HDPE phase. Morphology characterization reveals that when the mixing time of the added HDPE is 3 min, the formation of co‐continuous structure of PLA/HDPE (60/40, w/w) is observed, and CB particles migrate to the co‐continuous interface. The electrical conductivity measurement shows that such double percolation conductive network reduces the percolation threshold of PLA/HDPE/CB to 2.42 wt%. The rheological property proves the establishment of particle percolation network, and the rheological percolation threshold is determined as 1.20 wt%. The prepared PLA/HDPE/CB composite by the two‐step method displays a notably low percolation threshold than that prepared by one‐step simultaneous mixing. Moreover, this strategy presents a high potential application in the fabrication of conductive polymer composites involving other miscible multiphase systems.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.50291