Snapshot hyperspectral imaging using wide dilation networks

Hyperspectral (HS) cameras record the spectrum at multiple wavelengths for each pixel in an image, and are used, e.g., for quality control and agricultural remote sensing. We introduce a fast, cost-efficient and mobile method of taking HS images using a regular digital camera equipped with a passive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2021, Vol.32 (1), Article 9
Hauptverfasser: Toivonen, Mikko E., Rajani, Chang, Klami, Arto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral (HS) cameras record the spectrum at multiple wavelengths for each pixel in an image, and are used, e.g., for quality control and agricultural remote sensing. We introduce a fast, cost-efficient and mobile method of taking HS images using a regular digital camera equipped with a passive diffraction grating filter, using machine learning for constructing the HS image. The grating distorts the image by effectively mapping the spectral information into spatial dislocations, which we convert into a HS image by a convolutional neural network utilizing novel wide dilation convolutions that accurately model optical properties of diffraction. We demonstrate high-quality HS reconstruction using a model trained on only 271 pairs of diffraction grating and ground truth HS images.
ISSN:0932-8092
1432-1769
DOI:10.1007/s00138-020-01136-8