Clustering of Load Profiles of Residential Customers Using Extreme Points and Demographic Characteristics

In this paper, a systematic method is proposed to cluster the energy consumption patterns of residential customers by utilizing extreme points and demographic characteristics. The extreme points of the energy consumption pattern enable effective clustering of residential customers. Additionally, dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-02, Vol.10 (3), p.290
Hauptverfasser: Jeong, Hyun Cheol, Jang, Minseok, Kim, Taegon, Joo, Sung-Kwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a systematic method is proposed to cluster the energy consumption patterns of residential customers by utilizing extreme points and demographic characteristics. The extreme points of the energy consumption pattern enable effective clustering of residential customers. Additionally, demographic characteristics can be used to determine an effective extreme point for the clustering algorithm. The K-means-based features selection method is used to classify energy consumption patterns of residential customers into six types. Furthermore, the type of energy consumption pattern can be identified depending on the characteristics of residential customers. The analytical results of this paper show that the extreme points are effective in clustering the energy consumption patterns of residential customers.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10030290