Taylor Dispersion Analysis Coupled to Inductively Coupled Plasma-Mass Spectrometry for Ultrasmall Nanoparticle Size Measurement: From Drug Product to Biological Media Studies
During past decade, special focus has been laid on ultrasmall nanoparticles for nanomedicine and eventual clinical translation. To achieve such translation, a lot of challenges have to be solved. Among them, size determination is a particularly tricky one. In this aim, we have developed a simple hyp...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-01, Vol.93 (3), p.1254-1259 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During past decade, special focus has been laid on ultrasmall nanoparticles for nanomedicine and eventual clinical translation. To achieve such translation, a lot of challenges have to be solved. Among them, size determination is a particularly tricky one. In this aim, we have developed a simple hyphenation between Taylor dispersion analysis and inductively coupled plasma-mass spectrometry (ICP-MS). This method was proven to allow the determination of the hydrodynamic radius of metal-containing nanoparticles, even for sizes under 5 nm, with a relative standard deviation below 10% (with a 95% confidence interval) and at low concentrations. Moreover, its specificity provides the opportunity to perform measurements in complex biological media. This was applied to the characterization of an ultrasmall gadolinium-containing nanoparticle used as a theranostic agent in cancer diseases. Hydrodynamic radii measured in urine, cerebrospinal fluid, and undiluted serum demonstrated the absence of interaction between the particle and biological compounds such as proteins. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.0c03988 |