Trace minmax functions and the radical Laguerre–Pólya class
We classify functions f : ( a , b ) → R which satisfy the inequality tr f ( A ) + f ( C ) ≥ tr f ( B ) + f ( D ) when A ≤ B ≤ C are self-adjoint matrices, D = A + C - B , the so-called trace minmax functions. (Here A ≤ B if B - A is positive semidefinite, and f is evaluated via the functional calcul...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2021-03, Vol.8 (1), Article 9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify functions
f
:
(
a
,
b
)
→
R
which satisfy the inequality
tr
f
(
A
)
+
f
(
C
)
≥
tr
f
(
B
)
+
f
(
D
)
when
A
≤
B
≤
C
are self-adjoint matrices,
D
=
A
+
C
-
B
, the so-called
trace minmax functions.
(Here
A
≤
B
if
B
-
A
is positive semidefinite, and
f
is evaluated via the functional calculus.) A function is trace minmax if and only if its derivative analytically continues to a self-map of the upper half plane. The negative exponential of a trace minmax function
g
=
e
-
f
satisfies the inequality
det
g
(
A
)
det
g
(
C
)
≤
det
g
(
B
)
det
g
(
D
)
for
A
,
B
,
C
,
D
as above. We call such functions
determinant isoperimetric
. We show that determinant isoperimetric functions are in the “radical” of the Laguerre–Pólya class. We derive an integral representation for such functions which is essentially a continuous version of the Hadamard factorization for functions in the Laguerre–Pólya class. We apply our results to give some equivalent formulations of the Riemann hypothesis. |
---|---|
ISSN: | 2522-0144 2197-9847 |
DOI: | 10.1007/s40687-021-00248-5 |