Trace minmax functions and the radical Laguerre–Pólya class

We classify functions f : ( a , b ) → R which satisfy the inequality tr f ( A ) + f ( C ) ≥ tr f ( B ) + f ( D ) when A ≤ B ≤ C are self-adjoint matrices, D = A + C - B , the so-called trace minmax functions. (Here A ≤ B if B - A is positive semidefinite, and f is evaluated via the functional calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences 2021-03, Vol.8 (1), Article 9
1. Verfasser: Pascoe, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We classify functions f : ( a , b ) → R which satisfy the inequality tr f ( A ) + f ( C ) ≥ tr f ( B ) + f ( D ) when A ≤ B ≤ C are self-adjoint matrices, D = A + C - B , the so-called trace minmax functions. (Here A ≤ B if B - A is positive semidefinite, and f is evaluated via the functional calculus.) A function is trace minmax if and only if its derivative analytically continues to a self-map of the upper half plane. The negative exponential of a trace minmax function g = e - f satisfies the inequality det g ( A ) det g ( C ) ≤ det g ( B ) det g ( D ) for A ,  B ,  C ,  D as above. We call such functions determinant isoperimetric . We show that determinant isoperimetric functions are in the “radical” of the Laguerre–Pólya class. We derive an integral representation for such functions which is essentially a continuous version of the Hadamard factorization for functions in the Laguerre–Pólya class. We apply our results to give some equivalent formulations of the Riemann hypothesis.
ISSN:2522-0144
2197-9847
DOI:10.1007/s40687-021-00248-5