Biofunctional Peptide-Modified Extracellular Vesicles Enable Effective Intracellular Delivery via the Induction of Macropinocytosis
We previously reported that macropinocytosis (accompanied by actin reorganization, ruffling of the plasma membrane, and engulfment of large volumes of extracellular fluid) is an important process for the cellular uptake of extracellular vesicles, exosomes. Accordingly, we developed techniques to ind...
Gespeichert in:
Veröffentlicht in: | Processes 2021-02, Vol.9 (2), p.224 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We previously reported that macropinocytosis (accompanied by actin reorganization, ruffling of the plasma membrane, and engulfment of large volumes of extracellular fluid) is an important process for the cellular uptake of extracellular vesicles, exosomes. Accordingly, we developed techniques to induce macropinocytosis by the modification of biofunctional peptides on exosomal membranes, thereby enhancing their cellular uptake. Arginine-rich cell-penetrating peptides have been shown to induce macropinocytosis via proteoglycans; accordingly, we developed peptide-modified exosomes that could actively induce macropinocytotic uptake by cells. In addition, the activation of EGFR induces macropinocytosis; based on this knowledge, we developed artificial leucine-zipper peptide (K4)-modified exosomes. These exosomes can recognize E3 sequence-fused EGFR (E3-EGFR), leading to the clustering and activation of E3-EGFR by coiled-coil formation (E3/K4), which induces cellular exosome uptake by macropinocytosis. In addition, modification of pH-sensitive fusogenic peptides (e.g., GALA) also enhances the cytosolic release of exosomal contents. These experimental techniques and findings using biofunctional peptides have contributed to the development of exosome-based intracellular delivery systems. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr9020224 |