Automated Defect Recognition on X-ray Radiographs of Solid Propellant Using Deep Learning Based on Convolutional Neural Networks
For defense applications, rapid X-ray inspection of propellant samples is essential for the identification and assessment of defects. Automation of this process using artificial intelligence is possible by properly training a neural network model. Convolution Neural Networks (CNNs) have recently dem...
Gespeichert in:
Veröffentlicht in: | Journal of nondestructive evaluation 2021-03, Vol.40 (1), Article 18 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For defense applications, rapid X-ray inspection of propellant samples is essential for the identification and assessment of defects. Automation of this process using artificial intelligence is possible by properly training a neural network model. Convolution Neural Networks (CNNs) have recently demonstrated excellent success in both the tasks of image recognition and localisation using an adequate amount of data. In real-world, it’s not an easy task to produce the correct amount of experimental data required for the deep neural network to operate. In this work, we propose a method for producing synthetic radiographic data that is supported by ray tracing based radiographic simulations for the deep learning algorithms to automatically detect anomaly in X-ray images. The simulation results, which are then supplemented by noise extracted from the experimental data, show a good comparison with the measurements. This Simulation assisted Automatic Defect Recognition (Sim-ADR) system simultaneously perform defect detection and defect instance segmentation. The accuracy of the defect detection system is more than 87% on a testing set included 416 images. |
---|---|
ISSN: | 0195-9298 1573-4862 |
DOI: | 10.1007/s10921-021-00750-4 |