Singular integrals with variable kernels in dyadic settings
In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón-Zygmund type operators with respect to the dyadic metrics associated to the Haar bases.We show that Petermichl's dyadic kernel can be seen as a variable kernel singular integral and we extend...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we explore conditions on variable symbols with respect to Haar systems, defining Calderón-Zygmund type operators with respect to the dyadic metrics associated to the Haar bases.We show that Petermichl's dyadic kernel can be seen as a variable kernel singular integral and we extend it to dyadic systems built on spaces of homogeneous type. |
---|---|
ISSN: | 2331-8422 |