Transferring the structure of paper for mechanically durable superhydrophobic surfaces
Solution-phase deposition of nanomaterials represents a highly promising technology with strong industrial application potential for the fabrication of superhydrophobic surfaces. An important barrier towards the adaptation of such materials and processes in a broad range of applications is the limit...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2021-01, Vol.405, p.126543, Article 126543 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solution-phase deposition of nanomaterials represents a highly promising technology with strong industrial application potential for the fabrication of superhydrophobic surfaces. An important barrier towards the adaptation of such materials and processes in a broad range of applications is the limited mechanical durability of the nanostructures. Herein, we present a universal solution to this challenge by benefiting from the unique micro-structure of paper. Our approach is based on transferring the structure of paper into a target material, to form a mechanical protection layer for nanomaterials that were deposited from solution-phase, i.e. spray-coating. We demonstrate this concept through the transfer of the structure of paper to a free-standing PDMS film using a simple molding process. Spraying a dispersion of alkyl-silane functionalized silica nanoparticles on the structured free-standing film results in a hierarchically structured superhydrophobic surface with a water contact angle of 175° ± 2° and a sliding angle |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2020.126543 |