On flips in planar matchings

In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Specifically, consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. A flip operation on such a matching replaces two m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2021-01, Vol.289, p.427-445
Hauptverfasser: Milich, Marcel, Mütze, Torsten, Pergel, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Specifically, consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. A flip operation on such a matching replaces two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, and the flip is called centered if the quadrilateral contains the center of the unit circle. The graph Gn has those matchings as vertices, and an edge between any two matchings that differ in a flip, and it is known to have many interesting properties. In this paper we focus on the spanning subgraph Hn of Gn obtained by taking all edges that correspond to centered flips, omitting edges that correspond to non-centered flips. We show that the graph Hn is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of Hn is linear in n. Furthermore, we determine the minimum and maximum degrees of Hn for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles in Gn, and they resolve several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2020.10.018