Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg‐de Vries equation by using the finite element method

In this paper, we investigate the initial‐boundary‐value problem for the nonhomogeneous Korteweg‐de Vries equation with conformable derivative on time part of it. We use the finite element method with B‐spline as the basis functions for obtaining the numerical solutions for this nonlinear equation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2021-03, Vol.37 (2), p.1449-1463
Hauptverfasser: Pedram, Leila, Rostamy, Davoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1463
container_issue 2
container_start_page 1449
container_title Numerical methods for partial differential equations
container_volume 37
creator Pedram, Leila
Rostamy, Davoud
description In this paper, we investigate the initial‐boundary‐value problem for the nonhomogeneous Korteweg‐de Vries equation with conformable derivative on time part of it. We use the finite element method with B‐spline as the basis functions for obtaining the numerical solutions for this nonlinear equation. In addition, we prove a posteriori and a priori errors for it. These show the adaptivity and convergence of our method. Also, a posteriori error estimate concludes that the error estimate decreases as α increases. We show the accuracy of our work by comparing with the exact solution for the homogeneous KdV equation. We also bring an example for the nonhomogeneous conformable time KdV equation to demonstrate the accuracy and efficiency of the proposed method. Also, these numerical results are consistent with the result of theorems. The numerical results are given in tables and figures.
doi_str_mv 10.1002/num.22590
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481899827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481899827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-f05f9a96138eb9c2e817481e1be1a3fcc0603bda3e05fd58cb2e4ad7e0ef02673</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaztNEy9RxZ8oZUMRu8hJxq2rJG79Q9UdR-AAnI6T4LRsWY0075v3NA-hS0oGlBA2bH0zYCzh5Aj1KOFZxEZsfIx6JB3xiCb8_RSdWbsihNKE8h76nvkGjCpFja2uvVO6tVhL7JaAVaucCkKhfVsJs8MfovaA10YXNTRYarPH1mCcNwVUuNRtWDYiyNipBvCTNg62sPj5_KoAvxkFFsPGiy4GFzvsrWoXexPZhQGGYAytww24pa7O0YkUtYWLv9lH87vb18lDNH25f5zcTKOS8ZREkiSSCz6mcQYFLxlkNB1lFGgBVMSyLMmYxEUlYghglWRlwWAkqhQISMLGadxHVwff8NrGg3X5SnvThsicBaOM84x11PWBKo221oDM10Y1oZeckrwrPw_l5_vyAzs8sFtVw-5_MJ_Nnw8Xv9idi5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481899827</pqid></control><display><type>article</type><title>Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg‐de Vries equation by using the finite element method</title><source>Wiley Online Library All Journals</source><creator>Pedram, Leila ; Rostamy, Davoud</creator><creatorcontrib>Pedram, Leila ; Rostamy, Davoud</creatorcontrib><description>In this paper, we investigate the initial‐boundary‐value problem for the nonhomogeneous Korteweg‐de Vries equation with conformable derivative on time part of it. We use the finite element method with B‐spline as the basis functions for obtaining the numerical solutions for this nonlinear equation. In addition, we prove a posteriori and a priori errors for it. These show the adaptivity and convergence of our method. Also, a posteriori error estimate concludes that the error estimate decreases as α increases. We show the accuracy of our work by comparing with the exact solution for the homogeneous KdV equation. We also bring an example for the nonhomogeneous conformable time KdV equation to demonstrate the accuracy and efficiency of the proposed method. Also, these numerical results are consistent with the result of theorems. The numerical results are given in tables and figures.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22590</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Basis functions ; Boundary value problems ; B‐spline ; conformable derivative ; error estimate ; Exact solutions ; Finite element analysis ; Finite element method ; Korteweg-Devries equation ; Korteweg‐de Vries equation ; nonhomogeneous partial differential equation ; Nonlinear equations</subject><ispartof>Numerical methods for partial differential equations, 2021-03, Vol.37 (2), p.1449-1463</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-f05f9a96138eb9c2e817481e1be1a3fcc0603bda3e05fd58cb2e4ad7e0ef02673</citedby><cites>FETCH-LOGICAL-c2970-f05f9a96138eb9c2e817481e1be1a3fcc0603bda3e05fd58cb2e4ad7e0ef02673</cites><orcidid>0000-0001-9585-8904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22590$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22590$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pedram, Leila</creatorcontrib><creatorcontrib>Rostamy, Davoud</creatorcontrib><title>Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg‐de Vries equation by using the finite element method</title><title>Numerical methods for partial differential equations</title><description>In this paper, we investigate the initial‐boundary‐value problem for the nonhomogeneous Korteweg‐de Vries equation with conformable derivative on time part of it. We use the finite element method with B‐spline as the basis functions for obtaining the numerical solutions for this nonlinear equation. In addition, we prove a posteriori and a priori errors for it. These show the adaptivity and convergence of our method. Also, a posteriori error estimate concludes that the error estimate decreases as α increases. We show the accuracy of our work by comparing with the exact solution for the homogeneous KdV equation. We also bring an example for the nonhomogeneous conformable time KdV equation to demonstrate the accuracy and efficiency of the proposed method. Also, these numerical results are consistent with the result of theorems. The numerical results are given in tables and figures.</description><subject>Basis functions</subject><subject>Boundary value problems</subject><subject>B‐spline</subject><subject>conformable derivative</subject><subject>error estimate</subject><subject>Exact solutions</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Korteweg-Devries equation</subject><subject>Korteweg‐de Vries equation</subject><subject>nonhomogeneous partial differential equation</subject><subject>Nonlinear equations</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaztNEy9RxZ8oZUMRu8hJxq2rJG79Q9UdR-AAnI6T4LRsWY0075v3NA-hS0oGlBA2bH0zYCzh5Aj1KOFZxEZsfIx6JB3xiCb8_RSdWbsihNKE8h76nvkGjCpFja2uvVO6tVhL7JaAVaucCkKhfVsJs8MfovaA10YXNTRYarPH1mCcNwVUuNRtWDYiyNipBvCTNg62sPj5_KoAvxkFFsPGiy4GFzvsrWoXexPZhQGGYAytww24pa7O0YkUtYWLv9lH87vb18lDNH25f5zcTKOS8ZREkiSSCz6mcQYFLxlkNB1lFGgBVMSyLMmYxEUlYghglWRlwWAkqhQISMLGadxHVwff8NrGg3X5SnvThsicBaOM84x11PWBKo221oDM10Y1oZeckrwrPw_l5_vyAzs8sFtVw-5_MJ_Nnw8Xv9idi5o</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Pedram, Leila</creator><creator>Rostamy, Davoud</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9585-8904</orcidid></search><sort><creationdate>202103</creationdate><title>Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg‐de Vries equation by using the finite element method</title><author>Pedram, Leila ; Rostamy, Davoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-f05f9a96138eb9c2e817481e1be1a3fcc0603bda3e05fd58cb2e4ad7e0ef02673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basis functions</topic><topic>Boundary value problems</topic><topic>B‐spline</topic><topic>conformable derivative</topic><topic>error estimate</topic><topic>Exact solutions</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Korteweg-Devries equation</topic><topic>Korteweg‐de Vries equation</topic><topic>nonhomogeneous partial differential equation</topic><topic>Nonlinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedram, Leila</creatorcontrib><creatorcontrib>Rostamy, Davoud</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedram, Leila</au><au>Rostamy, Davoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg‐de Vries equation by using the finite element method</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2021-03</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>1449</spage><epage>1463</epage><pages>1449-1463</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we investigate the initial‐boundary‐value problem for the nonhomogeneous Korteweg‐de Vries equation with conformable derivative on time part of it. We use the finite element method with B‐spline as the basis functions for obtaining the numerical solutions for this nonlinear equation. In addition, we prove a posteriori and a priori errors for it. These show the adaptivity and convergence of our method. Also, a posteriori error estimate concludes that the error estimate decreases as α increases. We show the accuracy of our work by comparing with the exact solution for the homogeneous KdV equation. We also bring an example for the nonhomogeneous conformable time KdV equation to demonstrate the accuracy and efficiency of the proposed method. Also, these numerical results are consistent with the result of theorems. The numerical results are given in tables and figures.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22590</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9585-8904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2021-03, Vol.37 (2), p.1449-1463
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2481899827
source Wiley Online Library All Journals
subjects Basis functions
Boundary value problems
B‐spline
conformable derivative
error estimate
Exact solutions
Finite element analysis
Finite element method
Korteweg-Devries equation
Korteweg‐de Vries equation
nonhomogeneous partial differential equation
Nonlinear equations
title Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg‐de Vries equation by using the finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solutions%20of%20the%20initial%20boundary%20value%20problem%20for%20the%20perturbed%20conformable%20time%20Korteweg%E2%80%90de%20Vries%20equation%20by%20using%20the%20finite%20element%20method&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Pedram,%20Leila&rft.date=2021-03&rft.volume=37&rft.issue=2&rft.spage=1449&rft.epage=1463&rft.pages=1449-1463&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22590&rft_dat=%3Cproquest_cross%3E2481899827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481899827&rft_id=info:pmid/&rfr_iscdi=true