Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg‐de Vries equation by using the finite element method

In this paper, we investigate the initial‐boundary‐value problem for the nonhomogeneous Korteweg‐de Vries equation with conformable derivative on time part of it. We use the finite element method with B‐spline as the basis functions for obtaining the numerical solutions for this nonlinear equation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2021-03, Vol.37 (2), p.1449-1463
Hauptverfasser: Pedram, Leila, Rostamy, Davoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the initial‐boundary‐value problem for the nonhomogeneous Korteweg‐de Vries equation with conformable derivative on time part of it. We use the finite element method with B‐spline as the basis functions for obtaining the numerical solutions for this nonlinear equation. In addition, we prove a posteriori and a priori errors for it. These show the adaptivity and convergence of our method. Also, a posteriori error estimate concludes that the error estimate decreases as α increases. We show the accuracy of our work by comparing with the exact solution for the homogeneous KdV equation. We also bring an example for the nonhomogeneous conformable time KdV equation to demonstrate the accuracy and efficiency of the proposed method. Also, these numerical results are consistent with the result of theorems. The numerical results are given in tables and figures.
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22590