Scalar Gradient and Strain Rate Statistics in Oblique Premixed Flame–Wall Interaction Within Turbulent Channel Flows

Three-dimensional direct numerical simulations of V-flames interacting with chemically inert walls in a fully developed turbulent channel flow have been performed under adiabatic and isothermal wall boundary conditions using single-step chemistry. These simulations are representative of stoichiometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2021-02, Vol.106 (2), p.701-732
Hauptverfasser: Ahmed, Umair, Chakraborty, Nilanjan, Klein, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional direct numerical simulations of V-flames interacting with chemically inert walls in a fully developed turbulent channel flow have been performed under adiabatic and isothermal wall boundary conditions using single-step chemistry. These simulations are representative of stoichiometric methane-air mixture at unity Lewis number under atmospheric conditions. The turbulence in the non-reacting channel is representative of the friction velocity based Reynolds number R e τ = 110 . Differences in the statistical behaviours of the mean values of progress variable, temperature, and density have been reported for different wall boundary conditions. It is found that the mean location of the oblique flame interacting with the wall is affected by the choice of the wall boundary condition used. The influence of these differences on the flame dynamics is investigated by analysing the statistical behaviours of the surface density function (SDF) and the strain rates, which govern the evolution of the SDF. The mean variation of the SDF and the flame displacement speed are strongly affected by the wall boundary condition within the viscous sub-layer region of the boundary layer. The behaviours of the normal and tangential strain rates are found to be influenced by not only the differences in the wall boundary conditions, but also by the distance from the wall. The differences in the displacement speed statistics for different wall boundary conditions and wall distance affect the behaviours of the normal strain rate arising due to flame propagation and curvature stretch. The changes in the SDF behaviour in the near wall region have been explained in terms of the statistics of effective normal strain rate experienced by the progress variable iso-surfaces under different wall boundary conditions and wall normal distances.
ISSN:1386-6184
1573-1987
DOI:10.1007/s10494-020-00169-3