Numerical solution of Volterra‐Fredholm integral equation via hyperbolic basis functions

In this paper, a new method using hyperbolic basis functions is presented to solve second kind linear Volterra‐Fredholm integral equation. In other words, our method approximates the solution of a Volterra‐Fredholm integral equation by the hyperbolic basis functions, which produce block‐pulse functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical modelling 2021-03, Vol.34 (2), p.n/a
Hauptverfasser: Esmaeili, Hamid, Rostami, Majid, Hooshyarbakhsh, Vahideh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new method using hyperbolic basis functions is presented to solve second kind linear Volterra‐Fredholm integral equation. In other words, our method approximates the solution of a Volterra‐Fredholm integral equation by the hyperbolic basis functions, which produce block‐pulse functions. Hence, the new method reduces the linear Volterra‐Fredholm integral equation to a system of algebraic equations. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the new method.
ISSN:0894-3370
1099-1204
DOI:10.1002/jnm.2823