Numerical solution of Volterra‐Fredholm integral equation via hyperbolic basis functions
In this paper, a new method using hyperbolic basis functions is presented to solve second kind linear Volterra‐Fredholm integral equation. In other words, our method approximates the solution of a Volterra‐Fredholm integral equation by the hyperbolic basis functions, which produce block‐pulse functi...
Gespeichert in:
Veröffentlicht in: | International journal of numerical modelling 2021-03, Vol.34 (2), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new method using hyperbolic basis functions is presented to solve second kind linear Volterra‐Fredholm integral equation. In other words, our method approximates the solution of a Volterra‐Fredholm integral equation by the hyperbolic basis functions, which produce block‐pulse functions. Hence, the new method reduces the linear Volterra‐Fredholm integral equation to a system of algebraic equations. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the new method. |
---|---|
ISSN: | 0894-3370 1099-1204 |
DOI: | 10.1002/jnm.2823 |