Momentum-resolved spectroscopy for the saddle-point excitons in InSb
We use time- and angle-resolved photoemission spectroscopy to reveal momentum-resolved characteristics of interband transitions in InSb. The transitions along the Γ-K line are correctly described in terms of the independent-quasiparticle band picture up to 1.9 eV. However, the transitions along the...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-12, Vol.102 (23), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use time- and angle-resolved photoemission spectroscopy to reveal momentum-resolved characteristics of interband transitions in InSb. The transitions along the Γ-K line are correctly described in terms of the independent-quasiparticle band picture up to 1.9 eV. However, the transitions along the Γ-L line turn out to be strongly excitonic above 1.7 eV, associated with the saddle-point excitons at the E1 critical point. The momentum- and energy-resolved spectra of photoionization of the saddle-point excitons show that the wave function is composed of the electron-hole pair states with the wave vector of 0.453±0.055Å−1 along the Γ-L direction of the Brillouin zone. Time-resolved characteristics of the exciton photoionization show that the coherently generated excitonic polarization decays with a time constant of 22 ± 1 fs due to the autoionization from the excitonic state to uncorrelated electron-hole pair states. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.102.235202 |