Improving Few-Shot Learning with Auxiliary Self-Supervised Pretext Tasks

Recent work on few-shot learning \cite{tian2020rethinking} showed that quality of learned representations plays an important role in few-shot classification performance. On the other hand, the goal of self-supervised learning is to recover useful semantic information of the data without the use of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Simard, Nathaniel, Lagrange, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent work on few-shot learning \cite{tian2020rethinking} showed that quality of learned representations plays an important role in few-shot classification performance. On the other hand, the goal of self-supervised learning is to recover useful semantic information of the data without the use of class labels. In this work, we exploit the complementarity of both paradigms via a multi-task framework where we leverage recent self-supervised methods as auxiliary tasks. We found that combining multiple tasks is often beneficial, and that solving them simultaneously can be done efficiently. Our results suggest that self-supervised auxiliary tasks are effective data-dependent regularizers for representation learning. Our code is available at: \url{https://github.com/nathanielsimard/improving-fs-ssl}.
ISSN:2331-8422