Bi-modified 3D BiOBr microsphere with oxygen vacancies for efficient visible-light photocatalytic performance
Flower-like Bi that deposited BiOBr with oxygen vacancies (OVs) has been successfully fabricated via a simple solvothermal method followed by an easy hydrogenated treatment. The characterization results show that three-dimensional (3D) H-1.0Bi@BiOBr microspheres with the diameter about 1.2–1.5 μm we...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-07, Vol.54 (13), p.9397-9413 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flower-like Bi that deposited BiOBr with oxygen vacancies (OVs) has been successfully fabricated via a simple solvothermal method followed by an easy hydrogenated treatment. The characterization results show that three-dimensional (3D) H-1.0Bi@BiOBr microspheres with the diameter about 1.2–1.5 μm were self-assembled by countless two-dimensional (2D) interlaced BiOBr nanosheets. Bi-deposited and oxygen vacancies endowed the H-1.0Bi@BiOBr samples with a dramatically enhanced photocatalytic performance for the degradation of organic pollutants (Rhodamine B and Ofloxacin) and the solar-energy nitrogen fixation. It disclosed that the photocatalytic performance order of the photocatalyst was H
200
-1.0Bi@BiOBr > H
250
-1.0Bi@BiOBr > H
150
-1.0Bi@BiOBr > 1.0Bi@BiOBr > 2.0Bi@BiOBr > 0.5Bi@BiOBr > BiOBr. Particularly, the enhanced photocatalytic activity was ascribed to higher BET specific area, enhanced visible-light absorption, effective photoinduced charge separation and suitable amounts of oxygen vacancies. The H-1.0Bi@BiOBr samples also showed good photochemical stability under repeated visible-light irradiation. This work could shed light on exploring high-photocatalytic-property materials and stimulating the development of OVs-Bi@BiOBr photocatalysts, which had great potential for the solar-energy conversion, environmental purification and organic pollution treatment in water. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-019-03556-y |