Z-scheme CdIn2S4/BiOCl nanosheet face-to-face heterostructure: in-situ synthesis and enhanced interfacial charge transfer for high-efficient photocatalytic performance
In this work, a novel Z-scheme CdIn 2 S 4 nano-octahedron/BiOCl nanosheet (CIS/BOC) heterostructure was successfully designed and synthesized via a facile in-situ hydrothermal process, where the CdIn 2 S 4 nano-octahedra grew on the surfaces of tiny BiOCl nanosheets in a face-to-face way. The struct...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-07, Vol.54 (13), p.9573-9590 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a novel Z-scheme CdIn
2
S
4
nano-octahedron/BiOCl nanosheet (CIS/BOC) heterostructure was successfully designed and synthesized via a facile in-situ hydrothermal process, where the CdIn
2
S
4
nano-octahedra grew on the surfaces of tiny BiOCl nanosheets in a face-to-face way. The structure, morphology and optical properties of as-prepared samples were characterized through various technologies. The photocatalytic activities were systematically evaluated by the degradation of methyl orange (MO), tetracycline hydrochloride (TCH) and rhodamine B (RhB) under simulated solar light irradiation. The degradation results displayed that all CIS/BOC composites exhibited significantly enhanced photocatalytic activities toward MO degradation in comparison with the bare CdIn
2
S
4
and BiOCl. Simultaneously, the obtained CIS/BOC-2 with 6 wt.% BiOCl nanosheets loaded possessed the optimal photocatalytic performance, and its rate constant was about 3.6 and 2.59 times as high as those of bare CdIn
2
S
4
and BiOCl. Furthermore, the CIS/BOC-2 nanocomposite with superior photostability and repeatability also presented high photocatalytic activities for the removal of both antibiotics (TCH) and dyestuff (RhB). The unique Z-scheme face-to-face heterostructure with intimate contacted interface in CIS/BOC-x nanocomposites provided more charge transfer nanochannels, shortened the migration distance and boosted the separation of photoinduced charge carriers, resulting in the excellent photocatalytic activities. Our study may provide a promising strategy to develop and synthesize other Z-scheme face-to-face composite photocatalysts with good photocatalytic performance. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-019-03401-2 |