Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films
PVDF-TrFE-based wearable nanogenerators were designed and fabricated with enhanced performances via reduced graphene oxides (rGO) and in situ electric polarization. Our laboratory-made polarization system may complete the in situ poling of PVDF-TrFE films in 5 min without heating, which has the adva...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-04, Vol.54 (8), p.6401-6409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PVDF-TrFE-based wearable nanogenerators were designed and fabricated with enhanced performances via reduced graphene oxides (rGO) and in situ electric polarization. Our laboratory-made polarization system may complete the in situ poling of PVDF-TrFE films in 5 min without heating, which has the advantages of high production efficiency, excellent piezoelectric performances, and favorable uniformity, compared to traditional poling approaches. The addition of rGO into PVDF-TrFE significantly improved the crystallinity of the β-phase PVDF-TrFE and enhanced the formation of hydrogen bonds via interaction of dipoles between rGO and PVDF-TrFE. This further improved the energy-harvesting performances of these piezoelectric nanogenerators with 1.6 times of the open-circuit voltage and 2 times of the power density than that of pure PVDF-TrFE-based devices. The high production efficiency and excellent piezoelectric performances of in situ polarized rGO/PVDF-TrFE make them of great potential for self-powered, wearable/portable devices. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-019-03339-5 |