Energy absorption of a bio-inspired honeycomb sandwich panel
In this study, a novel bio-inspired honeycomb sandwich panel (BHSP) based on the microstructure of a woodpecker’s beak is proposed. Unlike a conventional honeycomb, the walls of the bio-inspired honeycomb (BH), which is used as the core of a sandwich panel, are made wavy. Finite element simulation s...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-04, Vol.54 (8), p.6286-6300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a novel bio-inspired honeycomb sandwich panel (BHSP) based on the microstructure of a woodpecker’s beak is proposed. Unlike a conventional honeycomb, the walls of the bio-inspired honeycomb (BH), which is used as the core of a sandwich panel, are made wavy. Finite element simulation shows that under dynamic crushing the proposed BHSPs exhibit superior energy absorption capability compared with the conventional honeycomb sandwich panel (CHSP). In particular, the specific energy absorption (SEA) of the BHSP increases by 125% and 63.7%, respectively, compared with that of the honeycomb sandwich panel with the same thickness core or the same volume core. In addition, a parametric study of the BHSPs is carried out to investigate the influences of the wave amplitude, wave number and core thickness on the energy absorption performance of the BHSPs. It is found that the BH core with a larger wave number and amplitude shows higher SEA. Furthermore, an increase in core thickness can improve the SEA. These results provide guidelines in the design of a lightweight sandwich panel for high-energy absorption capability. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-018-3163-x |