Dynamic 14N nuclear spin polarization in nitrogen-vacancy centers in diamond

We studied the dynamic nuclear spin polarization of nitrogen in negatively charged nitrogen-vacancy (NV) centers in diamond both experimentally and theoretically over a wide range of magnetic fields from 0–1100 G covering both the excited-state level anticrossing and the ground-state level anticross...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-12, Vol.102 (22), p.1
Hauptverfasser: Busaite, Laima, Lazda, Reinis, Berzins, Andris, Auzinsh, Marcis, Ferber, Ruvin, Gahbauer, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the dynamic nuclear spin polarization of nitrogen in negatively charged nitrogen-vacancy (NV) centers in diamond both experimentally and theoretically over a wide range of magnetic fields from 0–1100 G covering both the excited-state level anticrossing and the ground-state level anticrossing magnetic field regions. Special attention was paid to the less studied ground-state level anticrossing region. The nuclear spin polarization was inferred from measurements of the optically detected magnetic resonance signal. These measurements show that a very large (up to 96 ± 2 % ) nuclear spin polarization of nitrogen can be achieved over a very broad range of magnetic field starting from around 400 G up to magnetic field values substantially exceeding the ground-state level anticrossing at 1024 G. We measured the influence of angular deviations of the magnetic field from the NV axis on the nuclear spin polarization efficiency and found that, in the vicinity of the ground-state level anticrossing, the nuclear spin polarization is more sensitive to this angle than in the vicinity of the excited-state level anticrossing. Indeed, an angle as small as a tenth of a degree of arc can destroy almost completely the spin polarization of a nitrogen nucleus. In addition, we investigated theoretically the influence of strain and optical excitation power on the nuclear spin polarization.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.224101